Semin Neurol 2018; 38(01): 121-130
DOI: 10.1055/s-0038-1635106
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Gliomas in Children

Mariella G. Filbin
1   Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Cancer Center, Boston, Massachusetts
2   Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
3   The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
,
Dominik Sturm
4   Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany
5   Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
6   Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
16 March 2018 (online)

Abstract

Gliomas are the most common primary central nervous system (CNS) neoplasms in children and adolescents and are thought to arise from their glial progenitors or stem cells. Although the exact cells of origin for most pediatric gliomas remain to be identified, our current understanding is that specific cell populations during CNS development are susceptible to particular oncogenic events during certain time windows and thus give rise to pediatric gliomas with distinct histological, molecular, and clinical features. These may be roughly segregated into low-grade gliomas (WHO grades I or II; including most mixed glial–neuronal tumors) and high-grade gliomas (WHO grades III or IV) according to their clinical course when untreated, even though this is not yet entirely clear for some of the recently emerging groups. The genetic and epigenetic characterization of pediatric gliomas across ages and histologies has facilitated the delineation of biologically relevant subgroups and have revealed potentially targetable alterations in some of them. This review outlines diagnostic features and molecular alterations in pediatric low- and high-grade gliomas and how the latter might be exploited with future targeted therapeutic strategies.

 
  • References

  • 1 Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. WHO Classification of Tumours of the Central Nervous System. Revised. 4th ed. Geneva, Switzerland: WHO Press; 2016
  • 2 Listernick R, Charrow J, Gutmann DH. Intracranial gliomas in neurofibromatosis type 1. Am J Med Genet 1999; 89 (01) 38-44
  • 3 Northrup H, Krueger DA. ; International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 2013; 49 (04) 243-254
  • 4 Jones DT, Hutter B, Jäger N. , et al; International Cancer Genome Consortium PedBrain Tumor Project. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 2013; 45 (08) 927-932
  • 5 Zhang J, Wu G, Miller CP. , et al; St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 2013; 45 (06) 602-612
  • 6 Jones DT, Kocialkowski S, Liu L. , et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 2008; 68 (21) 8673-8677
  • 7 Schindler G, Capper D, Meyer J. , et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011; 121 (03) 397-405
  • 8 Dougherty MJ, Santi M, Brose MS. , et al. Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 2010; 12 (07) 621-630
  • 9 Qaddoumi I, Orisme W, Wen J. , et al. Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol 2016; 131 (06) 833-845
  • 10 Tatevossian RG, Tang B, Dalton J. , et al. MYB upregulation and genetic aberrations in a subset of pediatric low-grade gliomas. Acta Neuropathol 2010; 120 (06) 731-743
  • 11 Ramkissoon LA, Horowitz PM, Craig JM. , et al. Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci U S A 2013; 110 (20) 8188-8193
  • 12 Bandopadhayay P, Ramkissoon LA, Jain P. , et al. MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 2016; 48 (03) 273-282
  • 13 Bergthold G, Bandopadhayay P, Bi WL. , et al. Pediatric low-grade gliomas: how modern biology reshapes the clinical field. Biochim Biophys Acta 2014; 1845 (02) 294-307
  • 14 Bandopadhayay P, Bergthold G, London WB. , et al. Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: an analysis of the Surveillance Epidemiology and End Results (SEER) database. Pediatr Blood Cancer 2014; 61 (07) 1173-1179
  • 15 Grill J, Couanet D, Cappelli C. , et al. Radiation-induced cerebral vasculopathy in children with neurofibromatosis and optic pathway glioma. Ann Neurol 1999; 45 (03) 393-396
  • 16 Williams NL, Rotondo RL, Bradley JA. , et al. Late effects after radiotherapy for childhood low-grade glioma. Am J Clin Oncol 2016 (e-pub ahead of print)
  • 17 Dirks PB, Jay V, Becker LE. , et al. Development of anaplastic changes in low-grade astrocytomas of childhood. Neurosurgery 1994; 34 (01) 68-78
  • 18 Sharif S, Ferner R, Birch JM. , et al. Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: substantial risks after radiotherapy. J Clin Oncol 2006; 24 (16) 2570-2575
  • 19 Gnekow AK, Falkenstein F, von Hornstein S. , et al. Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro Oncol 2012; 14 (10) 1265-1284
  • 20 Ater JL, Xia C, Mazewski CM. , et al. Nonrandomized comparison of neurofibromatosis type 1 and non-neurofibromatosis type 1 children who received carboplatin and vincristine for progressive low-grade glioma: a report from the Children's Oncology Group. Cancer 2016; 122 (12) 1928-1936
  • 21 Lassaletta A, Scheinemann K, Zelcer SM. , et al. Phase II weekly vinblastine for chemotherapy-naïve children with progressive low-grade glioma: a Canadian Pediatric Brain Tumor Consortium Study. J Clin Oncol 2016; 34 (29) 3537-3543
  • 22 Packer RJ, Pfister S, Bouffet E. , et al. Pediatric low-grade gliomas: implications of the biologic era. Neuro Oncol 2017; 19 (06) 750-761
  • 23 Franz DN, Agricola K, Mays M. , et al. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann Neurol 2015; 78 (06) 929-938
  • 24 Krueger DA, Care MM, Holland K. , et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 2010; 363 (19) 1801-1811
  • 25 Kieran MW, Yao X, Macy M. , et al. Final results of a prospective multi-institutional phase II study of everolimus (RAD001), an mTor inhibitor, in pediatric patients with recurrent or progressive low-grade glioma. A POETIC consortium trial. Neuro Oncol 2014; 16 (Suppl. 03) iii27
  • 26 Kieran MW, Bouffet E, Tabori U. , et al. The first study of dabrafenib in pediatric patients with BRAF V600–mutant relapsed or refractory low-grade gliomas. Ann Oncol 2016; 27 (06) 19
  • 27 Karajannis MA, Legault G, Fisher MJ. , et al. Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol 2014; 16 (10) 1408-1416
  • 28 Sun Y, Alberta JA, Pilarz C. , et al. A brain-penetrant RAF dimer antagonist for the noncanonical BRAF oncoprotein of pediatric low-grade astrocytomas. Neuro Oncol 2017; 19 (06) 774-785
  • 29 Banerjee A, Jakacki RI, Onar-Thomas A. , et al. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro Oncol 2017; 19 (08) 1135-1144
  • 30 Dombi E, Baldwin A, Marcus LJ. , et al. Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N Engl J Med 2016; 375 (26) 2550-2560
  • 31 Johansson G, Andersson U, Melin B. Recent developments in brain tumor predisposing syndromes. Acta Oncol 2016; 55 (04) 401-411
  • 32 Buczkowicz P, Bartels U, Bouffet E, Becher O, Hawkins C. Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathol 2014; 128 (04) 573-581
  • 33 Huang TY, Piunti A, Lulla RR. , et al. Detection of histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma. Acta Neuropathol Commun 2017; 5 (01) 28
  • 34 Broniscer A, Chamdine O, Hwang S. , et al. Gliomatosis cerebri in children shares molecular characteristics with other pediatric gliomas. Acta Neuropathol 2016; 131 (02) 299-307
  • 35 Schwartzentruber J, Korshunov A, Liu XY. , et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012; 482 (7384): 226-231
  • 36 Wu G, Broniscer A, McEachron TA. , et al; St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 2012; 44 (03) 251-253
  • 37 Sturm D, Orr BA, Toprak UH. , et al. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 2016; 164 (05) 1060-1072
  • 38 Sturm D, Witt H, Hovestadt V. , et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012; 22 (04) 425-437
  • 39 Castel D, Philippe C, Calmon R. , et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 2015; 130 (06) 815-827
  • 40 Lewis PW, Müller MM, Koletsky MS. , et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 2013; 340 (6134): 857-861
  • 41 Wu G, Diaz AK, Paugh BS. , et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 2014; 46 (05) 444-450
  • 42 Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J. , et al. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet 2014; 46 (05) 462-466
  • 43 Buczkowicz P, Hoeman C, Rakopoulos P. , et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 2014; 46 (05) 451-456
  • 44 Taylor KR, Mackay A, Truffaux N. , et al. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 2014; 46 (05) 457-461
  • 45 Korshunov A, Schrimpf D, Ryzhova M. , et al. H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol 2017; 134 (03) 507-516
  • 46 Jones C, Baker SJ. Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer 2014; 14(10)
  • 47 Jones C, Karajannis MA, Jones DTW. , et al. Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol 2017; 19 (02) 153-161
  • 48 Cohen KJ, Pollack IF, Zhou T. , et al. Temozolomide in the treatment of high-grade gliomas in children: a report from the Children's Oncology Group. Neuro Oncol 2011; 13 (03) 317-323
  • 49 Jenkin RD, Boesel C, Ertel I. , et al. Brain-stem tumors in childhood: a prospective randomized trial of irradiation with and without adjuvant CCNU, VCR, and prednisone. A report of the Childrens Cancer Study Group. J Neurosurg 1987; 66 (02) 227-233
  • 50 Macy ME, Kieran MW, Chi SN. , et al. A pediatric trial of radiation/cetuximab followed by irinotecan/cetuximab in newly diagnosed diffuse pontine gliomas and high-grade astrocytomas: a Pediatric Oncology Experimental Therapeutics Investigators' Consortium study. Pediatr Blood Cancer 2017;64(11)
  • 51 Bailey S, Howman A, Wheatley K. , et al. Diffuse intrinsic pontine glioma treated with prolonged temozolomide and radiotherapy--results of a United Kingdom phase II trial (CNS 2007 04). Eur J Cancer 2013; 49 (18) 3856-3862
  • 52 Hummel TR, Salloum R, Drissi R. , et al. A pilot study of bevacizumab-based therapy in patients with newly diagnosed high-grade gliomas and diffuse intrinsic pontine gliomas. J Neurooncol 2016; 127 (01) 53-61
  • 53 Mandell LR, Kadota R, Freeman C. , et al. There is no role for hyperfractionated radiotherapy in the management of children with newly diagnosed diffuse intrinsic brainstem tumors: results of a Pediatric Oncology Group phase III trial comparing conventional vs. hyperfractionated radiotherapy. Int J Radiat Oncol Biol Phys 1999; 43 (05) 959-964
  • 54 Packer RJ, Boyett JM, Zimmerman RA. , et al. Outcome of children with brain stem gliomas after treatment with 7800 cGy of hyperfractionated radiotherapy. A Childrens Cancer Group Phase I/II Trial. Cancer 1994; 74 (06) 1827-1834
  • 55 Janssens GO, Gandola L, Bolle S. , et al. Survival benefit for patients with diffuse intrinsic pontine glioma (DIPG) undergoing re-irradiation at first progression: a matched-cohort analysis on behalf of the SIOP-E-HGG/DIPG working group. Eur J Cancer 2017; 73: 38-47
  • 56 Morales La Madrid A, Santa-María V, Cruz Martinez O. , et al. Second re-irradiation for DIPG progression, re-considering “old strategies” with new approaches. Childs Nerv Syst 2017; 33 (05) 849-852
  • 57 Korshunov A, Ryzhova M, Hovestadt V. , et al. Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 2015; 129 (05) 669-678
  • 58 Finlay JL, Boyett JM, Yates AJ. , et al; Childrens Cancer Group. Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. J Clin Oncol 1995; 13 (01) 112-123
  • 59 Sposto R, Ertel IJ, Jenkin RD. , et al. The effectiveness of chemotherapy for treatment of high grade astrocytoma in children: results of a randomized trial. A report from the Childrens Cancer Study Group. J Neurooncol 1989; 7 (02) 165-177
  • 60 Pollack IF, Boyett JM, Yates AJ. , et al; Children's Cancer Group. The influence of central review on outcome associations in childhood malignant gliomas: results from the CCG-945 experience. Neuro Oncol 2003; 5 (03) 197-207
  • 61 Jakacki RI, Cohen KJ, Buxton A. , et al. Phase 2 study of concurrent radiotherapy and temozolomide followed by temozolomide and lomustine in the treatment of children with high-grade glioma: a report of the Children's Oncology Group ACNS0423 study. Neuro Oncol 2016; 18 (10) 1442-1450
  • 62 Ramkissoon SH, Bandopadhayay P, Hwang J. , et al. Clinical targeted exome-based sequencing in combination with genome-wide copy number profiling: precision medicine analysis of 203 pediatric brain tumors. Neuro Oncol 2017; 19 (07) 986-996
  • 63 Worst BC, van Tilburg CM, Balasubramanian GP. , et al. Next-generation personalised medicine for high-risk paediatric cancer patients - the INFORM pilot study. Eur J Cancer 2016; 65: 91-101
  • 64 Mistry M, Zhukova N, Merico D. , et al. BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 2015; 33 (09) 1015-1022
  • 65 Paugh BS, Zhu X, Qu C. , et al. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res 2013; 73 (20) 6219-6229
  • 66 Koschmann C, Zamler D, MacKay A. , et al. Characterizing and targeting PDGFRA alterations in pediatric high-grade glioma. Oncotarget 2016; 7 (40) 65696-65706
  • 67 Hoffman LM, DeWire M, Ryall S. , et al. Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics. Acta Neuropathol Commun 2016; 4: 1
  • 68 Qaddoumi I, Kocak M, Pai Panandiker AS. , et al. Phase II trial of erlotinib during and after radiotherapy in children with newly diagnosed high-grade gliomas. Front Oncol 2014; 4: 67
  • 69 Sturm D, Bender S, Jones DT. , et al. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 2014; 14 (02) 92-107
  • 70 Filbin MG, Suvà ML. Gliomas genomics and epigenomics: arriving at the start and knowing it for the first time. Annu Rev Pathol 2016; 11: 497-521
  • 71 Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 2012; 150 (01) 12-27
  • 72 Saygin C, Carraway HE. Emerging therapies for acute myeloid leukemia. J Hematol Oncol 2017; 10 (01) 93
  • 73 Grasso CS, Tang Y, Truffaux N. , et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med 2015; 21 (06) 555-559
  • 74 Singleton WG, Collins AM, Bienemann AS. , et al. Convection enhanced delivery of panobinostat (LBH589)-loaded pluronic nano-micelles prolongs survival in the F98 rat glioma model. Int J Nanomedicine 2017; 12: 1385-1399
  • 75 Zhou Z, Singh R, Souweidane MM. Convection-enhanced delivery for diffuse intrinsic pontine glioma treatment. Curr Neuropharmacol 2017; 15 (01) 116-128
  • 76 Hummel TR, Wagner L, Ahern C. , et al. A pediatric phase 1 trial of vorinostat and temozolomide in relapsed or refractory primary brain or spinal cord tumors: a Children's Oncology Group phase 1 consortium study. Pediatr Blood Cancer 2013; 60 (09) 1452-1457
  • 77 Hashizume R, Andor N, Ihara Y. , et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med 2014; 20 (12) 1394-1396
  • 78 Mohammad F, Weissmann S, Leblanc B. , et al. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat Med 2017; 23 (04) 483-492
  • 79 Piunti A, Hashizume R, Morgan MA. , et al. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat Med 2017; 23 (04) 493-500