Anatomy of the Lymphatic System and the Lymphosome Concept with Reference to Lymphedema

Hiroo Suami, MD, PhD1 Mario F. Scaglioni, MD2

1 Australian Lymphoedema Education Research Treatment Centre (ALERT), Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
2 Department of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland

Semin Plast Surg 2018;32:5–11.

Abstract

Precise knowledge of the lymphatic system normal anatomy is essential for understanding what structural changes occur in patients with lymphedema. In this article, the authors first review previous anatomical studies and summarize the general anatomy of the lymphatic system and lymphatic pathways in the upper and lower extremities. Second, they introduce their new anatomical concept, the “lymphosome,” which describes how the lymphatic vessels in a particular region connect to the same subgroup of regional lymph nodes. In addition, they describe the anatomical relationship between the perforating lymphatic vessels and arteries. In the last section, they explain the anatomical changes in the lymphatics after lymph node dissection, with reference to secondary lymphedema.

The lymphatic system is distributed throughout the entire human body, except for the bone marrow, cartilage, and the central nervous system (not including the dura mater). The lymphatic capillary network wraps around the surface of the body and also lines the internal surface of the gastrointestinal and respiratory tract. The major role of the lymphatic system is to return protein deposits and extra tissue fluid extravasated from the blood capillaries to the interstitial tissues to feed into the blood circulation system to maintain fluid balance in the body.1 Another important function of the lymphatic system is to convey germs and pathogens to the lymph nodes via the lymphatic vessels to activate the immunological chain reaction that defends the body.

Our current knowledge of the lymphatic system anatomy relies largely on the results of cadaver studies by Sappey, published in 1874.2 In his studies, mercury was used to delineate the lymphatic system, but the toxicity of mercury meant that similar studies were never attempted, and his findings have never been re-evaluated. While Sappey’s atlases are still an excellent resource for understanding general lymphatic drainage in different parts of the body, recent clinical data obtained using lymphoscintigraphy sometimes contradict the conventionally acknowledged lymphatic drainage pathways in the torso.3

Knowledge of the normal anatomy of the lymphatic system is crucial for predicting which lymph nodes may be the site of metastatic disease after a primary tumor and for understanding the pathological changes that occur in lymphedema. Lymphedema is a disease regarded as a malfunction of the lymphatic system that presents as swelling in body regions, particularly the limbs. The causes of lymphedema are divided into congenital (primary lymphedema) and acquired factors (secondary lymphedema). Congenital lymphedema represents various structural abnormalities: aplasia and hyperplasia associated with malfunctioning valves in the lymphatic vessel. Gene mutations associated with other vascular malformations are identified as mutations of FOXC2 or SOX18.4 Acquired factors include trauma, filariasis, and...
cancer treatment. Secondary lymphedema related to cancer
treatment is triggered by breaking of the lymphatic vessels
following lymph node dissection and/or radiation.

Decongestive therapy is the primary course of treatment
for lymphedema. It includes manual lymphatic drainage
(MLD), skin care, and wearing of compression garments.
Alternatively, surgical treatment has been revisited recently,
with the development of a super-microsurgical technique
enabling lymphaticovenular anastomosis (LVA) and indocya-
nine green (ICG) fluorescence lymphography. A better under-
standing of the anatomy of the lymphatic system may lead to
the development of more reliable surgical treatments.

Structure of the Lymphatic System

Lymphatic vessels are divided into three categories based on
their structural characteristics: lymph capillaries, pre-col-
lectors, and lymph-collecting vessels (►Fig. 1). The lymph
capillaries (between 20 and 70 µm in diameter) are located
immediately beneath the epidermis. They do not have a
valvular structure. The lymph capillary begins with a blind
ending. The endothelial cells that form the lymph capillary
connect with each other loosely in an overlapping pattern,
like roof tiles. A fibrous structure called an anchoring fila-
ment connects the endothelial cell with the surrounding
tissue. When the tissue increases in volume owing to extra
interstitial fluid (edema), the anchoring filaments pull the
endothelial cells outward so that the junctions between the
cells open up to capture the extra interstitial fluid into the
lumen.

The lymph capillaries connect to pre-collectors in the
deep layer of the dermis. Pre-collectors (between 70 and
150 µm in diameter) have a valvular structure that regulates
the direction of lymph flow unidirectionally from the super-
ficial to the deep layers. Pre-collectors converge within the
dermis to form a larger vessel, exit beneath the dermis, and
run vertically through the subcutaneous tissue. These ver-
tical vessels are called efferent pre-collectors.

The pre-collectors connect to the lymph-collecting ves-
sels, or collectors, in the subcutaneous fat layer. These
collectors (between 150 and 500 µm in diameter) run hori-
zontally in the subcutaneous tissue and are larger than
the lymph capillaries and pre-collectors. The lymph-collect-
ing vessels have a three-layered wall made of endothelial
cells, smooth muscle cells, and collagen fibers with fibro-
blasts that contracts rhythmically to propel lymph flow.
The lymph-collecting vessels are subcategorized into superficial
and deep vessels according to their anatomical relationship
to the deep fascia. The deep lymph-collecting vessels accom-
pany the arteries, whereas the superficial lymph-collecting
vessels have no such preference. The superficial lymph-
collecting vessels outnumber the deep lymph-collecting
vessels, with the two types segregated from each other.

It is a common mistake to try to understand the lymphatic
system by comparing it to the venous system. The venous
system has a valvular structure, branching cutaneous veins
and perforating veins that connect the superficial and deep
veins. However, in the lymphatic system, the lymph-collect-
ing vessels are more independent than veins, with fewer
interconnections and branching at narrower angles. In addi-
tion, there is no bridge between the superficial and deep
lymph vessels. The lymphatic system does have perforating
vessels, but they do not join the superficial and deep lymph
vessels. Also, veins increase in diameter in the proximal

Fig. 1 Schematic diagram of the lymphatic system. (Adapted from Suami et al.5 Reproduced with permission.)
region, but the lymphatic vessels are uniform in size between the distal and the proximal regions near the lymph nodes.

Regional and Interval Lymph Nodes

As a consequence of his anatomical studies with human cadavers, Bartels proposed the lymph node barrier theory that postulates that each lymphatic vessel connects to at least one lymph node before connecting to the vein. The lymph node is the organ that catches pathogenic organisms or cancer cells and provokes an immune response to combat them to protect the human body. The barrier theory explains how germs are released into the systemic blood circulation only after the lymph nodes have activated the body’s immune response.

Lymph nodes are classified as ‘regional’ or ‘interval’, according to their location. Regional lymph nodes are groups of lymph nodes that form lymphatic basins into which lymph drains from different skin regions or organs. The regional lymph nodes are the target of lymph node dissection in cancer treatment to halt the spread of cancer cells, with neck dissection for tongue cancer, axillary dissection for breast cancer, andinguinal dissection for lower extremity melanoma. Interval lymph nodes are located in the limbs, and the lymph vessels pass through them on the way to the regional lymph nodes. The epitrochlear and popliteal nodes are well-known examples, but there are several other interval lymph nodes in the deep lymphatic system located along the main arteries in the limbs.

In the regional lymph nodes, there are more afferent lymph-collecting vessels than efferent lymph-collecting vessels; however, in the interval lymph nodes, there is a similar number of each type. The functional difference between the regional and interval lymph nodes has been little studied, and the role of the interval lymph nodes in fighting malignant neoplasms is uncertain and still under debate.

Superficial Lymphatic System in the Upper Extremities

The superficial lymphatic system in the upper extremities originates in the lymph capillaries in the fingertips and palm. The lymph capillaries transition into pre-collectors in the dermis, with the efferent pre-collectors exiting the dermis and connecting to the superficial lymph-collecting vessels in the subcutaneous tissue. One to three superficial lymph-collecting vessels (~200 µm in diameter) run along both sides of the fingers in the neurovascular bundle. All lymph-collecting vessels emerging from the fingers run axially in the dorsal hand in a layer slightly deeper than the cutaneous veins. The superficial lymph-collecting vessels are evenly spaced around the wrist joint and then gradually change course around the elbow toward the anteromedial aspect and run parallel to the basilic vein in the upper arm (~Fig. 2). They connect to one or two dominant lymph nodes (sentry nodes) in the lateral axillary region (~Fig. 3). The axillary lymph node region comprises 20 to 40 regional lymph nodes.
this supraclavicular pathway, if present, can work as an escape route to prevent upper-extremity lymphedema.

Superficial Lymphatic System in the Lower Extremities

Similar to the upper extremities, the superficial lymphatic system in the lower extremities originates in the lymph capillaries in the toes and soles of the feet. The diameter of the superficial lymph-collecting vessels in the foot is larger than that in the hand, between 300 and 700 µm. The vessels from the medial and anterior sides of the foot ascend axially, diverge, merge below the knee and then change course toward the anteromedial thigh, running parallel with the great saphenous vein above the knee (Fig. 4). The vessels in the medial bundle connect to two or three dominant lymph nodes (sentry nodes) at the bottom of the femoral triangle, which is bordered by the lateral border of the adductor longus, the medial border of the sartorius, and the inguinal ligament (Fig. 5).

The lymph capillaries in the lateral heel region converge to become one to three superficial lymph-collecting vessels that run along the small saphenous vein in the calf region. These vessels are separate from those in the medial bundle and connect to the popliteal lymph node, which is an interval lymph node located in the deep layer of the knee fossa. Efferent lymphatic vessels of the popliteal node ascend along the deep femoral artery and bypass the sentry lymph nodes in the superficial inguinal region.

Lymphosome Concept

Historically, anatomical studies of the lymphatic system flourished with the mercury injection technique from the 17th to 20th centuries, but mercury’s toxicity eventually brought an end to this practice. We developed a novel radiological method for demonstrating the lymphatic system in cadaveric specimens by using hydrogen peroxide, radiocontrast medium, and microinjection technique. Using this method, we found substantial anatomical differences between the lymphatic and blood systems.

Each superficial lymph-collecting vessel runs in a straight path toward its corresponding lymph node. These vessels sometimes diverge and re-converge, demonstrating their interconnections; however, the interconnections are much fewer than those found in blood vessels. No lymph vessels...
connect the superficial and deep lymph-collecting vessels. The superficial lymph-collecting vessels do not overlap, but are arranged in a plane. These characteristics enable us to divide the skin into territories that correlate with their lymph basins.

The following steps were taken to define the superficial lymphatic territories (lymphosomes) in a cadaver model. First, each superficial lymph-collecting vessel was identified in the peripheral region using hydrogen peroxide with or without dye. Radiopaque material was injected directly into the vessel using the microinjection technique. The course of each lymphatic vessel was followed by dissecting the vessel and following it through to its corresponding lymph node (sentinel node). If several lymph nodes were found in one lymph basin in the inguinal or axillary region, those lymph nodes were divided into subgroups according to their anatomical location in the upstream region. Each group of lymph nodes was color-coded, and the corresponding lymph vessels were coded in the same color by working backward from the node. Thereby the skin was divided into superficial lymphatic territories (lymphosomes) (Fig. 6).

Although minor differences in lymphatic anatomy between individuals and sides of the body have been consistently acknowledged, we succeeded in defining lymphosomes by dividing the regional nodes into subgroups. We expect the lymphosome concept to increase understanding of the lymphatic system, to provide a template to more accurately interpret lymphoscintigraphy, and to define suitable lymph node donor sites for vascularized lymph node transfer.

Perforating Lymphatic Vessels

There are no lymphatic vessels directly connecting the superficial and deep lymph-collecting vessels under normal conditions. However, there is another type of lymph vessel that runs in the subcutaneous tissue and joins with the deep lymph-collecting vessels, but does not form a connection between superficial and deep vessels. In our study, we named these vessels “perforating lymph vessels” because they run along the perforating artery and perforate the deep fascia (Fig. 7). We discovered these perforating lymph vessels when we dissected breast specimens and looked for the lymph vessels that drain from the breast to the internal mammary lymph nodes. In our specimens, the perforating lymph vessels ran along cutaneous branches of the internal mammary artery, which is the vascular pedicle of the deltopectoral flap. Although perforating lymph vessels in the torso have often been identified by lymphoscintigraphy, the corresponding lymph nodes were usually described as

Fig. 6 Lymphosomes of the body. The lymphatic territories are demarcated according to their corresponding lymphatic basins: 1. temporal, 2. occipital, 3. submental, 4. subclavicular, 5. subscapular, 6. lateral axillary, 7. pectoral, 8. superior inguinal, 9. lateral inguinal, 10. inferior inguinal, 11. popliteal. (Reproduced with permission of Hiroo Suami, 2018.)
"unexpected lymph nodes," because they were located in neither the axillary nor inguinal regions. These unexpected lymph nodes were found in the vertebral, internal mammary, and triangular muscular space nodes following injection of a radiotracer in the lumbar back region, the upper abdominal region, and the upper back region, respectively. In these cases, the unexpected lymph drainage was thought to pass through the perforating lymph vessels running along the cutaneous branches of the lumbar artery, the superficial superior epigastric artery and the circumflex scapular artery, respectively. A better understanding of the perforating lymph vessels would enable more accurate prediction of skin cancer metastases.

Postoperative Changes in Lymph Structure

The structure of the lymphatic system changes significantly after lymph node dissection, even though patients may not display any clinical symptoms. Severed lymph vessels regenerate from a stump and attempt to recanalize. A specific indicator of lymphedema is "dermal backflow," which can be detected by an intradermal injection of dye, radiotracer (lymphoscintigraphy), and ICG (fluorescent lymphography). When the superficial lymph-collecting vessels are obstructed in the proximal region following oncologic treatment, changes in the lymphatic system also occur in the distal regions, including the hands or feet in severe cases. In lymphedema, lymph fluid flows backward from the superficial lymph-collecting vessel to the pre-collectors and lymph capillaries in the skin via the efferent pre-collectors. Valve insufficiency in the superficial lymph-collecting vessels and pre-collectors causes the reflux of lymph fluid into the skin. The lymph capillaries and pre-collectors in the skin are dilated, and in the advanced stages of lymphedema, the superficial lymph-collecting vessels deteriorate and disappear. Notably, dermal backflow can be seen not only in lymphedematous limbs, but also in the subclinical phase in secondary lymphedema.

In mild cases of lymphedema, areas of dermal backflow are localized because some lymph-collecting vessels are still patent, so the dermal backflow can work as a detour route to bridge obstructed and intact lymph-collecting vessels. In advanced cases, there are fewer superficial lymph-collecting vessels, and the lymph fluid is carried by dermal backflow. The degree of lymphedema severity correlates with the amount of damaged lymph-collecting vessels (Fig. 8).

Conclusion

Due to the technical difficulties of visualizing the lymphatic system in cadaver dissection studies, anatomical study of the lymphatic system has been held back for over 100 years. However, the authors’ use of the radiographic cadaver microinjection technique and ICG fluorescence lymphography in the clinical setting can now provide further detail about the lymphatics. This article provides a brief overview of the anatomy of the lymphatic system. The lymphosome concept and new knowledge about the perforating lymphatic vessels can be a useful tool in accurately predicting the location of the sentinel nodes in skin or breast cancer patients and in promoting understanding of the pathophysiology of lymphedema.
Conflict of Interest
None.

References
7 Bartels P. Das Lymphgefäßsystem. Jene: Gustav Fischer; 1909
8 Jossifow GM. Das Lymphgefäßsystem des Menchen. Jena: Verlag von Gustav Fischer; 1930