Semin Neurol 2018; 38(01): 112-120
DOI: 10.1055/s-0038-1636502
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Meningiomas: Overview and New Directions in Therapy

Nancy Wang
1   Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
,
Matthias Osswald
2   Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
16 March 2018 (online)

Abstract

The majority of meningiomas, the most common primary brain tumor, are considered to be benign, and characteristic magnetic resonance imaging features allow a preliminary diagnosis. Meningiomas can be classified in the World Health Organization system as grade I, II, or III, depending on various histological features. In many cases, observation is the preferred management option, although this means the absence of a histological diagnosis. If necessary, standard therapy consists of surgery with or without adjuvant radiation, depending on the tumor grade and the degree of resection. To date, systemic therapies are not included in the standard of care. The level of evidence for treatment recommendations is low, and effective treatment regimens, especially for surgery-refractory and radiation-refractory meningiomas, are still very limited. Recent studies have broadened our knowledge of the genetics and pathogenesis of meningiomas and will lead to new therapeutic options. This review summarizes the epidemiology, pathogenesis and genetics, classification, and diagnosis of meningiomas, as well as management principles, including promising new avenues of therapy.

 
  • References

  • 1 Ostrom QT, Gittleman H, Fulop J. , et al. CBTRUS Statistical Report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro Oncol 2015; 17 (Suppl. 04) iv1-iv62
  • 2 Louis DN, Ohgaki H, Wiestler OD. , et al , eds. WHO Classification of Tumours of the Central Nervous System. 4th ed. Lyon, France: International Agency for Research on Cancer; 2016
  • 3 Jhawar BS, Fuchs CS, Colditz GA, Stampfer MJ. Sex steroid hormone exposures and risk for meningioma. J Neurosurg 2003; 99 (05) 848-853
  • 4 Wigertz A, Lönn S, Mathiesen T, Ahlbom A, Hall P, Feychting M. ; Swedish Interphone Study Group. Risk of brain tumors associated with exposure to exogenous female sex hormones. Am J Epidemiol 2006; 164 (07) 629-636
  • 5 Lee E, Grutsch J, Persky V, Glick R, Mendes J, Davis F. Association of meningioma with reproductive factors. Int J Cancer 2006; 119 (05) 1152-1157
  • 6 Lambe M, Coogan P, Baron J. Reproductive factors and the risk of brain tumors: a population-based study in Sweden. Int J Cancer 1997; 72 (03) 389-393
  • 7 Claus EB, Calvocoressi L, Bondy ML, Wrensch M, Wiemels JL, Schildkraut JM. Exogenous hormone use, reproductive factors, and risk of intracranial meningioma in females. J Neurosurg 2013; 118 (03) 649-656
  • 8 Benson VS, Kirichek O, Beral V, Green J. Menopausal hormone therapy and central nervous system tumor risk: large UK prospective study and meta-analysis. Int J Cancer 2015; 136 (10) 2369-2377
  • 9 Anic GM, Madden MH, Nabors LB. , et al. Reproductive factors and risk of primary brain tumors in women. J Neurooncol 2014; 118 (02) 297-304
  • 10 Hijiya N, Hudson MM, Lensing S. , et al. Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. JAMA 2007; 297 (11) 1207-1215
  • 11 Sadetzki S, Flint-Richter P, Starinsky S. , et al. Genotyping of patients with sporadic and radiation-associated meningiomas. Cancer Epidemiol Biomarkers Prev 2005; 14 (04) 969-976
  • 12 Ron E, Modan B, Boice Jr JD. , et al. Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med 1988; 319 (16) 1033-1039
  • 13 Sadamori N, Shibata S, Mine M. , et al. Incidence of intracranial meningiomas in Nagasaki atomic-bomb survivors. Int J Cancer 1996; 67 (03) 318-322
  • 14 Shintani T, Hayakawa N, Hoshi M. , et al. High incidence of meningioma among Hiroshima atomic bomb survivors. J Radiat Res (Tokyo) 1999; 40 (01) 49-57
  • 15 Sadetzki S, Flint-Richter P, Ben-Tal T, Nass D. Radiation-induced meningioma: a descriptive study of 253 cases. J Neurosurg 2002; 97 (05) 1078-1082
  • 16 Harrison MJ, Wolfe DE, Lau TS, Mitnick RJ, Sachdev VP. Radiation-induced meningiomas: experience at the Mount Sinai Hospital and review of the literature. J Neurosurg 1991; 75 (04) 564-574
  • 17 Bowers DC, Nathan PC, Constine L. , et al. Subsequent neoplasms of the CNS among survivors of childhood cancer: a systematic review. Lancet Oncol 2013; 14 (08) e321-e328
  • 18 Taylor AJ, Little MP, Winter DL. , et al. Population-based risks of CNS tumors in survivors of childhood cancer: the British Childhood Cancer Survivor Study. J Clin Oncol 2010; 28 (36) 5287-5293
  • 19 Rubinstein AB, Shalit MN, Cohen ML, Zandbank U, Reichenthal E. Radiation-induced cerebral meningioma: a recognizable entity. J Neurosurg 1984; 61 (05) 966-971
  • 20 Soffer D, Gomori JM, Siegal T, Shalit MN. Intracranial meningiomas after high-dose irradiation. Cancer 1989; 63 (08) 1514-1519
  • 21 Antinheimo J, Haapasalo H, Haltia M. , et al. Proliferation potential and histological features in neurofibromatosis 2-associated and sporadic meningiomas. J Neurosurg 1997; 87 (04) 610-614
  • 22 Lamszus K, Vahldiek F, Mautner V-F. , et al. Allelic losses in neurofibromatosis 2-associated meningiomas. J Neuropathol Exp Neurol 2000; 59 (06) 504-512
  • 23 van den Munckhof P, Christiaans I, Kenter SB, Baas F, Hulsebos TJM. Germline SMARCB1 mutation predisposes to multiple meningiomas and schwannomas with preferential location of cranial meningiomas at the falx cerebri. Neurogenetics 2012; 13 (01) 1-7
  • 24 Mawrin C, Perry A. Pathological classification and molecular genetics of meningiomas. J Neurooncol 2010; 99 (03) 379-391
  • 25 Saraf S, McCarthy BJ, Villano JL. Update on meningiomas. Oncologist 2011; 16 (11) 1604-1613
  • 26 Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM. Meningioma grading: an analysis of histologic parameters. Am J Surg Pathol 1997; 21 (12) 1455-1465
  • 27 Sahm F, Schrimpf D, Stichel D. , et al. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol 2017; 18 (05) 682-694
  • 28 Buetow MP, Buetow PC, Smirniotopoulos JG. Typical, atypical, and misleading features in meningioma. Radiographics 1991; 11 (06) 1087-1106
  • 29 Larson JJ, Tew Jr JM, Simon M, Menon AG. Evidence for clonal spread in the development of multiple meningiomas. J Neurosurg 1995; 83 (04) 705-709
  • 30 Stangl AP, Wellenreuther R, Lenartz D. , et al. Clonality of multiple meningiomas. J Neurosurg 1997; 86 (05) 853-858
  • 31 Psaras T, Pantazis G, Steger V, Meyermann R, Honegger J, Beschorner R. Benign meningioma developing late lung metastases: case report and review of the literature. Clin Neuropathol 2009; 28 (06) 453-459
  • 32 Azene EM, Gai QW, Tabar SP, Morrison AL, Meisenberg B. Metastasis of a histologically benign--appearing meningioma to the iliac bone. J Clin Oncol 2008; 26 (28) 4688-4690
  • 33 Surov A, Gottschling S, Bolz J. , et al. Distant metastases in meningioma: an underestimated problem. J Neurooncol 2013; 112 (03) 323-327
  • 34 Seizinger BR, de la Monte S, Atkins L, Gusella JF, Martuza RL. Molecular genetic approach to human meningioma: loss of genes on chromosome 22. Proc Natl Acad Sci U S A 1987; 84 (15) 5419-5423
  • 35 Ruttledge MH, Sarrazin J, Rangaratnam S. , et al. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet 1994; 6 (02) 180-184
  • 36 Ueki K, Wen-Bin C, Narita Y, Asai A, Kirino T. Tight association of loss of merlin expression with loss of heterozygosity at chromosome 22q in sporadic meningiomas. Cancer Res 1999; 59 (23) 5995-5998
  • 37 Gusella JF, Ramesh V, MacCollin M, Jacoby LB. Merlin: the neurofibromatosis 2 tumor suppressor. Biochim Biophys Acta 1999; 1423 (02) M29-M36
  • 38 Shaw RJ, Paez JG, Curto M. , et al. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev Cell 2001; 1 (01) 63-72
  • 39 Lallemand D, Curto M, Saotome I, Giovannini M, McClatchey AI. NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev 2003; 17 (09) 1090-1100
  • 40 James MF, Han S, Polizzano C. , et al. NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol 2009; 29 (15) 4250-4261
  • 41 James MF, Stivison E, Beauchamp R. , et al. Regulation of mTOR complex 2 signaling in neurofibromatosis 2-deficient target cell types. Mol Cancer Res 2012; 10 (05) 649-659
  • 42 Perry A, Cai DX, Scheithauer BW. , et al. Merlin, DAL-1, and progesterone receptor expression in clinicopathologic subsets of meningioma: a correlative immunohistochemical study of 175 cases. J Neuropathol Exp Neurol 2000; 59 (10) 872-879
  • 43 Gutmann DH, Donahoe J, Perry A. , et al. Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas. Hum Mol Genet 2000; 9 (10) 1495-1500
  • 44 Zang KD. Meningioma: a cytogenetic model of a complex benign human tumor, including data on 394 karyotyped cases. Cytogenet Cell Genet 2001; 93 (3-4): 207-220
  • 45 Sahm F, Schrimpf D, Olar A. , et al. TERT promoter mutations and risk of recurrence in meningioma. J Natl Cancer Inst 2015; 108 (05) 377
  • 46 Hartmann C, Sieberns J, Gehlhaar C, Simon M, Paulus W, von Deimling A. NF2 mutations in secretory and other rare variants of meningiomas. Brain Pathol 2006; 16 (01) 15-19
  • 47 Kros J, de Greve K, van Tilborg A. , et al. NF2 status of meningiomas is associated with tumour localization and histology. J Pathol 2001; 194 (03) 367-372
  • 48 Gunel M. ; Yale-Bonn-Cologne Brain Tumor Genetics Study Group. 218 meningioma driver mutations determine their anatomical site of origin. Neurosurgery 2016; 63 (01) (Suppl. 01) 185
  • 49 Wellenreuther R, Kraus JA, Lenartz D. , et al. Analysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma. Am J Pathol 1995; 146 (04) 827-832
  • 50 Harmancı AS, Youngblood MW, Clark VE. , et al. Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nat Commun 2017; 8: 14433
  • 51 Clark VE, Erson-Omay EZ, Serin A. , et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 2013; 339 (6123): 1077-1080
  • 52 Brastianos PK, Horowitz PM, Santagata S. , et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet 2013; 45 (03) 285-289
  • 53 Sahm F, Bissel J, Koelsche C. , et al. AKT1E17K mutations cluster with meningothelial and transitional meningiomas and can be detected by SFRP1 immunohistochemistry. Acta Neuropathol 2013; 126 (05) 757-762
  • 54 Strickland MR, Gill CM, Nayyar N. , et al. Targeted sequencing of SMO and AKT1 in anterior skull base meningiomas. J Neurosurg 2017; 127 (02) 438-444
  • 55 Abedalthagafi M, Bi WL, Aizer AA. , et al. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol 2016; 18 (05) 649-655
  • 56 Reuss DE, Piro RM, Jones DTW. , et al. Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol 2013; 125 (03) 351-358
  • 57 Smith MJ. Germline and somatic mutations in meningiomas. Cancer Genet 2015; 208 (04) 107-114
  • 58 Shankar GM, Abedalthagafi M, Vaubel RA. , et al. Germline and somatic BAP1 mutations in high-grade rhabdoid meningiomas. Neuro Oncol 2017; 19 (04) 535-545
  • 59 Black PM, Carroll R, Glowacka D, Riley K, Dashner K. Platelet-derived growth factor expression and stimulation in human meningiomas. J Neurosurg 1994; 81 (03) 388-393
  • 60 Johnson MD, Woodard A, Kim P, Frexes-Steed M. Evidence for mitogen-associated protein kinase activation and transduction of mitogenic signals by platelet-derived growth factor in human meningioma cells. J Neurosurg 2001; 94 (02) 293-300
  • 61 Johnson MD, Okedli E, Woodard A, Toms SA, Allen GS. Evidence for phosphatidylinositol 3-kinase-Akt-p7S6K pathway activation and transduction of mitogenic signals by platelet-derived growth factor in meningioma cells. J Neurosurg 2002; 97 (03) 668-675
  • 62 Harland SP, Kuc RE, Pickard JD, Davenport AP. Expression of endothelin(A) receptors in human gliomas and meningiomas, with high affinity for the selective antagonist PD156707. Neurosurgery 1998; 43 (04) 890-898 , discussion 898–899
  • 63 Nordqvist ACS, Peyrard M, Pettersson H. , et al. A high ratio of insulin-like growth factor II/insulin-like growth factor binding protein 2 messenger RNA as a marker for anaplasia in meningiomas. Cancer Res 1997; 57 (13) 2611-2614
  • 64 Nordqvist AC, Mathiesen T. Expression of IGF-II, IGFBP-2, -5, and -6 in meningiomas with different brain invasiveness. J Neurooncol 2002; 57 (01) 19-26
  • 65 Ragel BT, Jensen RL. Aberrant signaling pathways in meningiomas. J Neurooncol 2010; 99 (03) 315-324
  • 66 Drevelegas A. Extra-axial brain tumors. Eur Radiol 2005; 15 (03) 453-467
  • 67 Rapalino O, Smirniotopoulos JG. Extra-axial brain tumors. Handb Clin Neurol 2016; 135: 275-291
  • 68 Kimura H, Takeuchi H, Koshimoto Y. , et al. Perfusion imaging of meningioma by using continuous arterial spin-labeling: comparison with dynamic susceptibility-weighted contrast-enhanced MR images and histopathologic features. AJNR Am J Neuroradiol 2006; 27 (01) 85-93
  • 69 Galldiks N, Albert NL, Sommerauer M. , et al. PET imaging in patients with meningioma-report of the RANO/PET Group. Neuro Oncol 2017; 19 (12) 1576-1587
  • 70 Starr CJ, Cha S. Meningioma mimics: five key imaging features to differentiate them from meningiomas. Clin Radiol 2017; 72 (09) 722-728
  • 71 Nowosielski M, Galldiks N, Iglseder S. , et al. Diagnostic challenges in meningioma. Neuro Oncol 2017; 19 (12) 1588-1598
  • 72 Bohuslavizki KH, Brenner W, Braunsdorf WE. , et al. Somatostatin receptor scintigraphy in the differential diagnosis of meningioma. Nucl Med Commun 1996; 17 (04) 302-310
  • 73 Sankila R, Kallio M, Jääskeläinen J, Hakulinen T. Long-term survival of 1986 patients with intracranial meningioma diagnosed from 1953 to 1984 in Finland. Comparison of the observed and expected survival rates in a population-based series. Cancer 1992; 70 (06) 1568-1576
  • 74 Talbäck M, Stenbeck M, Rosén M. Up-to-date long-term survival of cancer patients: an evaluation of period analysis on Swedish Cancer Registry data. Eur J Cancer 2004; 40 (09) 1361-1372
  • 75 Stafford SL, Perry A, Suman VJ. , et al. Primarily resected meningiomas: outcome and prognostic factors in 581 Mayo Clinic patients, 1978 through 1988. Mayo Clin Proc 1998; 73 (10) 936-942
  • 76 McCarthy BJ, Davis FG, Freels S. , et al. Factors associated with survival in patients with meningioma. J Neurosurg 1998; 88 (05) 831-839
  • 77 Simpson D. The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry 1957; 20 (01) 22-39
  • 78 Oya S, Kawai K, Nakatomi H, Saito N. Significance of Simpson grading system in modern meningioma surgery: integration of the grade with MIB-1 labeling index as a key to predict the recurrence of WHO Grade I meningiomas. J Neurosurg 2012; 117 (01) 121-128
  • 79 Nanda A, Bir SC, Maiti TK, Konar SK, Missios S, Guthikonda B. Relevance of Simpson grading system and recurrence-free survival after surgery for World Health Organization Grade I meningioma. J Neurosurg 2017; 126 (01) 201-211
  • 80 Aizer AA, Bi WL, Kandola MS. , et al. Extent of resection and overall survival for patients with atypical and malignant meningioma. Cancer 2015; 121 (24) 4376-4381
  • 81 Hwang WL, Marciscano AE, Niemierko A. , et al. Imaging and extent of surgical resection predict risk of meningioma recurrence better than WHO histopathological grade. Neuro Oncol 2016; 18 (06) 863-872
  • 82 Estiar MA, Javan F, Zekri A, Mehrazin M, Mehdipour P. Prognostic significance of MYCN gene amplification and protein expression in primary brain tumors: astrocytoma and meningioma. Cancer Biomark 2017; 19 (03) 341-351
  • 83 Yesilöz Ü, Kirches E, Hartmann C. , et al. Frequent AKT1E17K mutations in skull base meningiomas are associated with mTOR and ERK1/2 activation and reduced time to tumor recurrence. Neuro Oncol 2017; 19 (08) 1088-1096
  • 84 Boetto J, Bielle F, Sanson M, Peyre M, Kalamarides M. SMO mutation status defines a distinct and frequent molecular subgroup in olfactory groove meningiomas. Neuro Oncol 2017; 19 (03) 345-351
  • 85 Han SJ, Reis G, Kohanbash G. , et al. Expression and prognostic impact of immune modulatory molecule PD-L1 in meningioma. J Neurooncol 2016; 130 (03) 543-552
  • 86 Cai DX, Banerjee R, Scheithauer BW, Lohse CM, Kleinschmidt-Demasters BK, Perry A. Chromosome 1p and 14q FISH analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications. J Neuropathol Exp Neurol 2001; 60 (06) 628-636
  • 87 Maíllo A, Orfao A, Sayagués JM. , et al. New classification scheme for the prognostic stratification of meningioma on the basis of chromosome 14 abnormalities, patient age, and tumor histopathology. J Clin Oncol 2003; 21 (17) 3285-3295
  • 88 Jansen M, Mohapatra G, Betensky RA, Keohane C, Louis DN. Gain of chromosome arm 1q in atypical meningioma correlates with shorter progression-free survival. Neuropathol Appl Neurobiol 2012; 38 (02) 213-219
  • 89 Perry A, Banerjee R, Lohse CM, Kleinschmidt-DeMasters BK, Scheithauer BW. A role for chromosome 9p21 deletions in the malignant progression of meningiomas and the prognosis of anaplastic meningiomas. Brain Pathol 2002; 12 (02) 183-190
  • 90 Boström J, Meyer-Puttlitz B, Wolter M. , et al. Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas. Am J Pathol 2001; 159 (02) 661-669
  • 91 Olar A, Wani KM, Wilson CD. , et al. Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma. Acta Neuropathol 2017; 133 (03) 431-444
  • 92 Goldbrunner R, Minniti G, Preusser M. , et al. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol 2016; 17 (09) e383-e391
  • 93 National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology: Central Nervous System Cancers. Version 1.2016. https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf Accessed 16 April 2017
  • 94 Kokubo M, Shibamoto Y, Takahashi JA. , et al. Efficacy of conventional radiotherapy for recurrent meningioma. J Neurooncol 2000; 48 (01) 51-55
  • 95 Kaur G, Sayegh ET, Larson A. , et al. Adjuvant radiotherapy for atypical and malignant meningiomas: a systematic review. Neuro Oncol 2014; 16 (05) 628-636
  • 96 Wang C, Kaprealian TB, Suh JH. , et al. Overall survival benefit associated with adjuvant radiotherapy in WHO grade II meningioma. Neuro Oncol 2017; 19 (09) 1263-1270
  • 97 Jenkinson MD, Javadpour M, Haylock BJ. , et al. The ROAM/EORTC-1308 trial: Radiation versus Observation following surgical resection of Atypical Meningioma: study protocol for a randomised controlled trial. Trials 2015; 16 (01) 519
  • 98 Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD. Gamma knife radiosurgery of imaging-diagnosed intracranial meningioma. Int J Radiat Oncol Biol Phys 2003; 56 (03) 801-806
  • 99 Starke RM, Williams BJ, Hiles C, Nguyen JH, Elsharkawy MY, Sheehan JP. Gamma knife surgery for skull base meningiomas. J Neurosurg 2012; 116 (03) 588-597
  • 100 Sheehan JP, Starke RM, Kano H. , et al. Gamma Knife radiosurgery for posterior fossa meningiomas: a multicenter study. J Neurosurg 2015; 122 (06) 1479-1489
  • 101 Bloch O, Kaur G, Jian BJ, Parsa AT, Barani IJ. Stereotactic radiosurgery for benign meningiomas. J Neurooncol 2012; 107 (01) 13-20
  • 102 Elia AEH, Shih HA, Loeffler JS. Stereotactic radiation treatment for benign meningiomas. Neurosurg Focus 2007; 23 (04) E5
  • 103 Ding D, Starke RM, Hantzmon J, Yen C-P, Williams BJ, Sheehan JP. The role of radiosurgery in the management of WHO Grade II and III intracranial meningiomas. Neurosurg Focus 2013; 35 (06) E16
  • 104 Tanzler E, Morris CG, Kirwan JM, Amdur RJ, Mendenhall WM. Outcomes of WHO Grade I meningiomas receiving definitive or postoperative radiotherapy. Int J Radiat Oncol Biol Phys 2011; 79 (02) 508-513
  • 105 Halasz LM, Bussière MR, Dennis ER. , et al. Proton stereotactic radiosurgery for the treatment of benign meningiomas. Int J Radiat Oncol Biol Phys 2011; 81 (05) 1428-1435
  • 106 McDonald MW, Plankenhorn DA, McMullen KP. , et al. Proton therapy for atypical meningiomas. J Neurooncol 2015; 123 (01) 123-128
  • 107 Schrell UM, Rittig MG, Anders M. , et al. Hydroxyurea for treatment of unresectable and recurrent meningiomas. II. Decrease in the size of meningiomas in patients treated with hydroxyurea. J Neurosurg 1997; 86 (05) 840-844
  • 108 Newton HB, Scott SR, Volpi C. Hydroxyurea chemotherapy for meningiomas: enlarged cohort with extended follow-up. Br J Neurosurg 2004; 18 (05) 495-499
  • 109 Mason WP, Gentili F, Macdonald DR, Hariharan S, Cruz CR, Abrey LE. Stabilization of disease progression by hydroxyurea in patients with recurrent or unresectable meningioma. J Neurosurg 2002; 97 (02) 341-346
  • 110 Rosenthal MA, Ashley DL, Cher L. Treatment of high risk or recurrent meningiomas with hydroxyurea. J Clin Neurosci 2002; 9 (02) 156-158
  • 111 Chamberlain MC, Johnston SK. Hydroxyurea for recurrent surgery and radiation refractory meningioma: a retrospective case series. J Neurooncol 2011; 104 (03) 765-771
  • 112 Chamberlain MC. Hydroxyurea for recurrent surgery and radiation refractory high-grade meningioma. J Neurooncol 2012; 107 (02) 315-321
  • 113 Chamberlain MC. Adjuvant combined modality therapy for malignant meningiomas. J Neurosurg 1996; 84 (05) 733-736
  • 114 Kaba SE, DeMonte F, Bruner JM. , et al. The treatment of recurrent unresectable and malignant meningiomas with interferon alpha-2B. Neurosurgery 1997; 40 (02) 271-275
  • 115 Muhr C, Gudjonsson O, Lilja A, Hartman M, Zhang ZJ, Långström B. Meningioma treated with interferon-alpha, evaluated with [(11)C]-L-methionine positron emission tomography. Clin Cancer Res 2001; 7 (08) 2269-2276
  • 116 Chamberlain MC, Glantz MJ. Interferon-alpha for recurrent World Health Organization grade 1 intracranial meningiomas. Cancer 2008; 113 (08) 2146-2151
  • 117 Chamberlain MC, Glantz MJ, Fadul CE. Recurrent meningioma: salvage therapy with long-acting somatostatin analogue. Neurology 2007; 69 (10) 969-973
  • 118 Simó M, Argyriou AA, Macià M. , et al. Recurrent high-grade meningioma: a phase II trial with somatostatin analogue therapy. Cancer Chemother Pharmacol 2014; 73 (05) 919-923
  • 119 Norden AD, Ligon KL, Hammond SN. , et al. Phase II study of monthly pasireotide LAR (SOM230C) for recurrent or progressive meningioma. Neurology 2015; 84 (03) 280-286
  • 120 Ji Y, Rankin C, Grunberg S. , et al. Double-blind phase III randomized trial of the antiprogestin agent mifepristone in the treatment of unresectable meningioma: SWOG s9005. J Clin Oncol 2015; 33 (34) 4093-4098
  • 121 Goodwin JW, Crowley J, Eyre HJ, Stafford B, Jaeckle KA, Townsend JJ. A phase II evaluation of tamoxifen in unresectable or refractory meningiomas: a Southwest Oncology Group study. J Neurooncol 1993; 15 (01) 75-77
  • 122 Pistolesi S, Boldrini L, Gisfredi S. , et al. Angiogenesis in intracranial meningiomas: immunohistochemical and molecular study. Neuropathol Appl Neurobiol 2004; 30 (02) 118-125
  • 123 Kaley TJ, Wen P, Schiff D. , et al. Phase II trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma. Neuro Oncol 2015; 17 (01) 116-121
  • 124 Nayak L, Iwamoto FM, Rudnick JD. , et al. Atypical and anaplastic meningiomas treated with bevacizumab. J Neurooncol 2012; 109 (01) 187-193
  • 125 Lou E, Sumrall AL, Turner S. , et al. Bevacizumab therapy for adults with recurrent/progressive meningioma: a retrospective series. J Neurooncol 2012; 109 (01) 63-70
  • 126 Grimm SA, Kumthekar P, Chamberlain MC. , et al. Phase II trial of bevacizumab in patients with surgery and radiation refractory progressive meningioma. J Clin Oncol 2015; 33 (15_suppl): 2055-2055
  • 127 Shih KC, Chowdhary S, Rosenblatt P. , et al. A phase II trial of bevacizumab and everolimus as treatment for patients with refractory, progressive intracranial meningioma. J Neurooncol 2016; 129 (02) 281-288
  • 128 Raizer JJ, Grimm SA, Rademaker A. , et al. A phase II trial of PTK787/ZK 222584 in recurrent or progressive radiation and surgery refractory meningiomas. J Neurooncol 2014; 117 (01) 93-101
  • 129 Wen PY, Yung WKA, Lamborn KR. , et al. Phase II study of imatinib mesylate for recurrent meningiomas (North American Brain Tumor Consortium study 01-08). Neuro Oncol 2009; 11 (06) 853-860
  • 130 Beauchamp RL, James MF, DeSouza PA. , et al. A high-throughput kinome screen reveals serum/glucocorticoid-regulated kinase 1 as a therapeutic target for NF2-deficient meningiomas. Oncotarget 2015; 6 (19) 16981-16997
  • 131 Wu S, Gavrilovec I, De La Fuente MI, Kreisl T, Kaley T. ACTR-43. Pilot study of Optune (NovoTTF-100A) for recurrent atypical and anaplastic meningioma. Neuro Oncol 2016; 18 (06) 11
  • 132 Preusser M, Spiegl-Kreinecker S, Lötsch D. , et al. Trabectedin has promising antineoplastic activity in high-grade meningioma. Cancer 2012; 118 (20) 5038-5049