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1. Introduction 

Work by Shortliffe and Buchanan 
on MYCIN, key parts of which are 
described in the paper reprinted in this 
Yearbook [1], was the first detailed 
case study of a large medical rule­
based system which handled uncer­
tainty [2]. By publishing their insights 
and making the EMYCIN tool widely 
available to their R & D community 
(3], tbeMYCIN investigators promoted 
widespread experimentation with "ex­
pert" systems in academic and com­
mercial settings in the early 1980's 
(e.g. [4-6]). This in tum led to impor­
tant new insights into artificial intelli­
gence (AI) in general and medical AI 
in particular [7], as well as a thriving 
commercial sector. Despite their draw­
backs, such rule-based systems re­
main influential to the present day. 

1.1 Some Influential Aspects of 
this Paper 

The key insight described in this 
PlPerwascombining qualitative know­
ledge represented as IF ... THEN rules 
With quantitative knowledge, repre­
tented as certainty factors, to build a 
hybrid system, MYCIN. This system 
Was the forerunner oflatertechniques, 
;eh as causal probabilistic networks 
• ], Which have proved rigorous, effi­

Clent methods [9] for propagating un-
certainty. ... 
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The Promises and Perils of 
Modelling Medical Reasoning 

Reflections on E.H. Shortliffe and B.G. Buchanan's paper: 
A model of Inexact Reasoning in Medicine 

In their paper, the authors explored 
some of the similarities and differ­
ences between the statistical concept 
of probability and experts' use of intui­
tive notions of belief and certainty in 
clinical decision making. They then 
identified some of the ideological and 
practical problems posed by the "Idiot 
Bayes" approach. In response to these 
difficulties, the authors developed meth­
ods for capturing knowledge about 
beliefs and disbeliefs from domain ex­
perts using a 1-10 scale, and described 
the "paradox of belief'. For example, 
an expert may elaborate a rule which, 
if true, carries a certainty in the conclu­
sion of 0.7. However, even if all the 
rules conditions are met, this does not 
necessarily mean the expert's belief in 
the conclusion being false is 0.3; their 
disbelief may be more or less. To 
overcome this paradox, the team de­
veloped a calculus which they called 
the Certainty Factor (CF) mechanism. 
For a given rule, the Certainty Factor is 
equal to how much the evidence in the 
left hand side of the rule increases an 
expert's belief in the conclusion minus 
how much it increases their disbelief in 
the same conclusion. 

The authors explored some of the 
properties and implications of this cal­
culus and demonstrated rigorous math­
ematical proofs of some of its key 
features. Having thus specified their 
certainty calculus, they developed a 

range of robust tools to propagate un­
certainty using CPs, and incorporated 
these into the generic EMYCIN ex­
pert system shell [3]. Finally, using this 
novel calculus, the investigators imple­
mented the large-scale MYCIN advi­
sory system. Althoughneverusedrou­
tinely in clinical practice and archived 
in the early 1980s, the MYCIN rule 
base was the substrate for several 
other significant AI and Al-in-medi­
cine research projects over the next 
few years, such as work on the gen­
eration of explanations [10,11], ge­
neric prototypes [12] and task models. 

Many of the insights originating from 
the MYCIN project remain valid to­
day, though with 25 years of progress 
in computing hardware, software and 
medical informatics [13], it would be 
surprising if some had not been chal­
lenged. 

2. Current Position and 
Validity of those Insights 

2.1 Broad Comments 

To a clinician, it is curious in retro­
spect that the investigators chose diag­
nosis for amulti-yearresearch project. 
They state in their paper that the "Po­
tential clinical significance (of diag­
nosis) is apparent", but in fact many 
patients have either an established diag-
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nosis of a chronic disease, or the diag­
nosis can be readily deduced from 
specific tests [14]. By studying the 
questions and dilemmas arising in rou­
tine consultations, several workers 
have concluded that physicians need 
assistance not with diagnosis but with 
choice of therapy, monitoring of dis­
ease progress and interpretation of 
test results [15,16]. To support this, 
Haynes discovered that, when physi­
cians were provided with on-line ac­
cess to MEDLINE to facilitate patient 
management, only 6% of queries were 
about diagnosis while 41% concerned 
choice of therapy [ 17]. It is, therefore, 
like I y that diagnostic decision-support 
systems (DSS) will prove less effec­
tive than systems which target other 
kinds of decisions [18]. This prediction 
was confirmed by a recent authorita­
tive systematic review of 68 
randornised controlled trials of DSS 
[ 19]. While 33 of the 45 trials studying 
DSS, which advised on therapy or 
preventive care (73%) showed clear 
improvements in clinical practice, diag­
nosis was the least fruitful area for 
decision support, with only one of 5 trials 
(20%) showing an improvements [19]. 

Another assumption which now 
seems less robust is that "Rigorous 
probabilistic analysis (is) the ideal stan­
dard by which to judge the rationality 
of a physician's decisions". Since the 
1980's [20] there has been increasing 
realisation that appropriate evidence 
from rigorous clinical studies should 
not only guide clinical actions but also 
be used as the basis for judging the 
rationality of physicians' decisions 
[21 ,22]. Rigorous probabilities are now 
seen to be a component of this evi­
dence, but must be combined with 
many other factors, including the local 
availability of diagnostic tests (which 
reflects society's values), the risk or 
discomfort of these tests, and evi­
dence that stems from patients and 
their medical records [23]. Such evi­
dence includes informal patient pref-
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erences, formal utilities, and an indi­
vidual patient's ranking of which clini­
cal and other outcomes are most im­
portant to them [24]. 

In addition to choosing between 
antibiotic therapies for a possible sep­
ticaemia (MYCIN' s domain), clinical 
decision makers will also consider do­
ing nothing, referral (nowadays per­
haps by telemedicine [25]), and a thera­
peutic trial among their "diagnostic" 
or, more broadly, management options. 
In choosing between the options, they 
may wish to take account of a "regret" 
factor [26] which reflects the loss of 
current opportunities and narrowing of 
future options, and even medico-legal 
exposure [27]. Thus, using a single 
dimension such as "certainty" to de­
scribe the complex reasoning which 
leads to the identification of an infect­
ing organism or a therapeutic regime 
seems unnecessarily restricted. In re­
ality, physicians navigate a complex 
network of management options and 
methods for choosing a rational path 
between them, which invite a richer 
variety of decision mechanisms. 

One challenging issue which many 
decision-support system builders en­
counter but few formalise is the dis­
tinction between modelling the real 
world and modelling policy [28]. For 
example, many models attempt to de­
scribe actual clinical decision making 
or patient physiology, such as insulin­
glucose metabolism [29]. Such models 
always seem restricted in their scope 
and accuracy and, while being of edu­
cational value [30], usually have lim­
ited clinical impact. The alternative is 
to use computers to model individual or 
shared policies, such as practice guide­
lines [31]. Because simplifying assump­
tions have already been made by the 
authors of guidelines, they represent 
what ought to be done (the "norma­
tive" approach), and can be more con­
vincingly modelled. It seems as though 
-if the aim is to build models which are 

near to the truth - we should adopt 
normative approach and avoid 
ling reality. This is especially ....... v ..... n .. 

now that many clinical DSS have 
implemented [19] and criteria for 
ing the success of a decision 
have moved from its faithfulness ~~ 
physicians' think-aloud protocols to its 
utility for generating alarms or remind. 
ers which improve clinical practice 
[32]. 

To a rational clinician, the decision 
to treat a patient or collect more data 
depends crucially on the baseline risk 
of serious outcome, the probability that 
the patient will respond to the candi­
date treatment, the risk of side effects 
and the value of any extra information, 
forexampleaspecialinvestigation[l4], 
Specifically, this decision depends on 
whether any extra information will 
modify the clinician's estimate of the 
probability of therapeutic success suf. 
ficiently to cross the test I treat thresh, 
old [22,33]. Such reasoning under· 
scores the need for the "rational clini, 
cal exam" [34] and rigorous evaluatiOd 
of the performance characteristics o~ 
clinical findings and laboratory tests, 
expressed as likelihood ratios [ 14,35]. 
Thus, in contrast to our understanding 
25 years ago [1], there is no need to 

capture hundreds of clinical fmding~ 
because most are irrelevant, reflecting 
clinical tradition rather than their value 
to informed decision making [36]. 

Most medical informatics worker~ 
invited to collaborate in a project now 
shy away from the technology-led ap· 
proach [13,37] and start by analysing 
the clinical problem and informatiol 
needs [38]. Before building a decision 
support system, a baseline audit of 
current clinical decision making [39] is 
needed to evaluate which errors are 
being made and their causes. Sue~ 
causes may include: 
- A lack of clinical or other knowl 

edge. 
- Poor quality patient data, e.g., de 
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s in obtaining data from records 
f40] or laboratory resu~ts. 
An inability to synthesise the two. 

: ~ple acti~n sl~ps [ 41] 
,LaCk of motivation. 

: Barriers to physicians taking the 
correct actions, originating within a 
_peer group or the organisation (e.g., 
lack of time or drugs) [ 42]. 

An example of a technology-led 

project and the fail~r~ of a c~mputer 
DSS to improve declSlon making con­
c:erns the management of chest pain 
patients in an emergency room [ 43] .It 
emerged that the considerable delays 
and inaccuracies in patient manage­
ment were largely due to a shortage of 
beds on the Cardiac Care Unit, rather 
than poor clinical decisions [ 18]; as a 
result, the DSS hardly improved mat­
ters [43]. 

2.2 Comments on Knowledge 
Representation and Uncertainty 
Propagation in MYCIN 

MYCIN was undoubtedly a land­
mark system in terms of the technical 
and other insights it embodied. How­
ever, as mentioned earlier, it would be 
a serious mistake to build decision­
support systems using the same tech­
niques now, for major reasons. 

2.2.1 Uncertainty Representation 
First, considering the representation 

andpropagationofuncertaintyinadvi­
sory systems, the authors of the classic 
paper claimed that the Bayesian ap­
Pioach "becomes unworkable" in any 
realistic system. However, de 
Dombal 's simple Bayesian Leeds ab­
dominal pain system using 55 indicants 
halved the rates of serious errors and 
llllnecessary surgery in 12 hospitals 
[~]. The authors expanded on this 
Pl>~t by stating that the "Extent to 
-mch numbers can be manipulated as 
Pl'ohabilities is unclear" .It is certainly 
line that obtaining point estimates for 
Pl'obabilities from experts is hard, and 
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it seems to be better to ask them to 
state a likely range of probabilities. 
One benefit of this approach is that it 
reveals an implied sample size, which 
in tum can be used to prime a system 
which combines subjective and objec­
tive probabilities [45]. However, the 
most significant development is that 
since 1988 we have been able to ma­
nipulate Bayesian probabilities accu­
rately in a multiply connected graph or 
causal probabilistic network using the 
Lauritzen-Spiegelhalter algorithm, even 
in the presence of multiple diagnoses 
[8]. 

Of course, there are many other 
methods to model and represent un­
certainty, including: 
- Standard statistical approaches such 

as CART [46]. 
Multiple logistic regression [ 4 7]. 
Dempster-Schafer methods. 
Decision analysis. 
Cognitive modelling. · 
Qualitative approaches, such as 
counting the arguments for and 
against a proposition [ 48]. 
Non-monotonic logics, such as the 
deontic logic of obligation. 
Machine-learning methods, such as 
neural nets and genetic algorithms, 
which seem best suited for domains 
where we have no qualitative model, 
such as bioinformatics [ 49] 

Some of these uncertainty methods 
have led to successful probabilistic 
systems, such as the spectacular dis­
crimination and calibration of the 
Apache Ill system for predicting mor­
tality in intensive care [50]. This is 
based on standard statistical modelling 
techniques applied carefully to large 
high-quality patient databases acquired 
in many hospitals using rigorous defmi­
tions. 

2.2.2 Lack of Modularity of Rules 
A second insight was the realisation 

that we cannot readily split off "dis­
crete packets of knowledge" [1] as 
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rules, "the myth of modularity" [51]. 
To summarise, in a typical large rule­
based system, the role of each rule in 
the consultation process and genera­
tion of advice depends critically on 
which other rules are present. Also, 
and most difficult to predict, the way in 
which the certainty factors propagate 
from rule to rule depends on the CPs in 
other rules. The resulting difficulties of 
maintaining large rule bases [ 5] has led 
to increasing disillusionment with the 
simple method of representing knowl­
edge as IF ... THEN rules. 

2.2.3 Kinds of Knowledge Represented 
inMYCIN 
The third major realisation was that 

in MYCIN, the "judgmental knowl­
edge" in rules actually compiles at 
least two different kinds ofknowledge 
into the one-dimensional association: 
IF a AND b, THEN c. Clancey ob­
served that rules in MYCIN were 
directed at two tasks: abstracting from 
clinical and laboratory fmdings to inter­
mediate conclusions (e.g., the identity 
of an infecting organism), then classi­
fyingthe conclusions using simple heu­
ristics (e.g., a suitable antibiotic regime 
to cover these organisms) [11]. This is 
why the "explanations" generated by 
MYCIN' s simple rule traces were 
inadequate for most purposes except 
to help the knowledge engineer debug 
the system. The need to represent 
such "task" knowledge explicitly in AI 
systems, so that it in tum can be rea­
soned about or used to generate expla­
nations, has been realised [52]. 

A further difficulty with MYCIN' s 
IF ... THEN rules was that they failed 
to capture explicitly our deeper knowl­
edge about the entities being reasoned 
about, such as: 

The relationships, or ontology, of the 
organisms, cultures, infections, clini­
cal findings, laboratory results, etc. 
(e.g., streptococcus is a kind of 
pathogenic bacterium). 

- The temporal relationships between 

163 



phenomena such as clinical find­
ings, disease processes, and labora­
tory tests (e.g., infection precedes 
clinical symptoms by hours or days). 

- Detailed anatomical knowledge 
about the body (e.g., the meningeal 
space does not usually communi­
cate with the arterial circulation). 

- Detailed causal knowledge (e.g., 
bacteria become penicillin resistant 
by evolving an enzyme which de­
grades penicillin). 

Recognition of the value of explic­
itly representing such knowledge has 
led to AI systems with higher perfor­
mance, especially at their margins, 
greater ability to explain their behaviour, 
easier maintenance and optimism about 
re-using the knowledge they contain. 

2.2.4 System Control and Interfaces 
The final insight about MYC.IN and 

similar backward-chaining rule-based 
systems arose from the observation 
that they patronised their users, and 
were unable to make use of data avail­
able in otherfonns.ln a seminal paper, 
tlle Demise of the Greek Oracle model 
for advisory systems was welcomed 
[53] and principles set out for a more 
sympathetic, opportunist model of ad­
vice. One central feature of this is the 
substitution of forward for backward 
chaining, while another is linkage of 
DSS to existing systems, particularly 
the electronic patient record. Of course, 
such linkages require that clinical data 
are coded using a controlled vocabu­
lary, leaving other issues concerning 
clinical cost -benefit to be resolved [54]. 

Conclusions 

The MYCIN project was very sig­
nificant in the 1970s, which was influ­
ential over the following 25 years, both 
in academic AI and in the uptake of 
expert systems in industry and com­
merce. Now it may seem less relevant, 
thanks to a variety of developments 
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ranging from the invention of the 
Lauritzen-Spiegelhalteralgorithm tore­
appraisal of the role of evidence and of 
patient preferences in clinical decision 
making. However, it is improbable that 
some of these more recent develop­
ments would have reached their cur­
rentmaturity without the ground-break­
ing work on medical AI in the 1970s 
and early 1980s which this paper ex­
emplifies. 
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