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1. Overview 

Among the many scientific and tech­
nological advances related to high 
performance computing, medical im­
aging stands out for its powerful popu­
lar visual appeal in demystifying the 
~er structures of the human body. It 
ts also a harbinger of automation in 
health care practice, biomedical re-

Yearbook of Medical Informatics 1994 

Review Paper 

Medical Image Processing in an 
Era of High-Performance 
Computing 

Abstract: Advanced radiology practices are already benefiting from 
powerful 'and increasingly more economical computing and networking 
facilities. Medical image processing methods have improved dramati­
cally over the past five years, with sophisticated 3D display, visualization 
and analysis techniques allowing increased integration of multiple mo­
dalities of imaging, flexible environments for imaging analysis, and 
P ACS (picture archiving and communication systems) for ease of trans­
mission and retrieval. Emerging directions involve teleradiology and 
telesurgery virtual reality applications, the development of new image 
database techniques, and the building of large visual databases like that 
of the Visible Human Project. Challenging problems of image segmen­
tation, registration, and multimodal image fusion are still with us. 
Building dynamic, flexible electronic atlases will have a profound effect 
on the understanding of structure and function from the level of cellular 
physiology to gross anatomy, but requires the development of new 
techniques of visual knowledge representation and more standardized 
ways of defining the conceptual and linguistic constructs of visual objects 
in biomedicine, for linkage to medical records, research results, and 
educational materials. Methods for reasoning with visual information in 
the context of multimedia information systems present an inviting 
challenge to the upcoming generation of researchers in medical informatics. 
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search, and education. Medical imag­
ing offers unparalleled opportunities 
for dramatically improving health care 
through technology by increasing the 
ways and sophistication with which 
we can non-invasively visualize, ana­
lyze, and interpret the processes of 
health and disease. 

Advances in imaging instrumenta­
tion and the design of new modalities 

depend on high-performance comput­
ing for rapid reconstruction and dis­
play of large sets of images. New 
techniques of digital image process­
ing, particularly in 3D, are the keys to 
effective visualization, manipulation, 
and analysis [ 1], seeking to extract and 
use the medical information conten't of 
the images. With such tools in hand, 
we can begin to discern the emergence 
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of a new medical imaging informatics. 
While the large amount of precisely 

localizable and measurable informa­
tion in medical images is already im­
mensely useful for individual patient 
diagnosis and therapy, the accumu­
lated visual information contained in 
biomedical image databases [2-5] is a 
veritable treasure trove waiting to be 
mined for scientific and educational 
purposes. However, because medical 
images are concrete and patient-spe­
cific, they lack the abstract expressive 
power oflanguage-based descriptions. 
As a result, their information content 
is much less easily defined, shared and 
communicated than are the traditional 
symbolic descriptions of patient con­
ditions found in the medical record [ 6-
8]. 

The integration of imaging infor­
mation with other medical records 
within health information systems [9-
12], in ways that will facilitate stan­
dardized communication and interpre­
tation, can well be considered the cen­
tral problem of medical imaging 
informatics. And, with the develop­
ment of multimedia and virtual reality 
systems [13] that can capture voice, 
touch and other sensory information 
as well, we may even foresee the emer­
gence of a more general "multimedia 
medical informatics" to study the prob­
lems of coherently representing and 
integrating such disparate sources of 
information. 

As high-speed and high-bandwidth 
networking comes closer to reality [14], 
the transmission of multi-modality 
medical images between imaging and 
health care centers will become rou­
tine, profoundly affecting the practice 
of medicine. The ability of 
teleradiology to interactively monitor 
a measurement as it is happening and 
make it available remotely, as well as 
to retrieve medical images efficiently 
from image databases for comparison 
with other related images, not only 
promises to increase the productivity 
of radiological procedures [15], but 
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also makes possible for the first time 
large-scale quantitative studies of the 
visualizable anatomical changes that 
occur in disease. Until recently, the 3D 
nature of human anatomy was diffi­
cult and prohibitively expensive to 
model on the computer. Advances in 
hardware, graphics, and imagery soft- . 
ware and in modelling methods are 
finally making it possible to plan for 
real-time 3D anatomical modelling and 
matching to patient data. Sophisticated 
interactive 3D display and visualiza­
tion methods [1,16-20] are being 
widely distributed and already prov­
ing their worth in advanced radiology 
research and demonstration projects. 

Despite much progress in Picture 
Archiving Systems (PACS) [21,22], 
relatively few centers at present have 
fully integrated digital processing of 
all routinely performed imaging stud­
ies. But their numbers are increasing, 
and software environments designed 
specifically for medical image pro­
cessing and analysis are also becom­
ing more sophisticated and widely 
available [23-26]. The tool kit of tech­
niques for image analysis is also grow­
ing: many more sophisticated process­
ing and analysis techniques [27] and 
methods for image registration [28] 
are being increasingly developed, as 
are methods for lossless (as well as 
lossy) image compression and decom­
pression [29], facilitating the effective 
transmission of the large numbers of 
image data now being generated [30]. 

From an informatics perspective, it 
is also crucial that parallel efforts are 
ongoing in the development of elec­
tronic patient record systems and the 
informational infrastructure for them­
vocabularies and languages for de­
scribing medical know ledge and prac­
tice. The Unified Medical Language 
System (UMLS) [31 ,32] and standards 
for medical and radiological nomen­
clature [33,34] can help in describing 
the contents of medical images more 
uniformly and according to shared 
conventions. From a practical point of 

view, current research in modelling 
radiological concepts [35] is based on 
analysis oflinguistic constructs within 
reports describing radiographic im­
ages. 

The present review highlights re­
search in medical image processing. 
Despite slower-than-expected progress 
in the central problem of automated 
image segmentation [36], develop~ 
ments in interactive visualization and 
analysis software have more than com­
pensated for this by providing effec­
tive tools for radiology practice and 
research [ 1]. The present convergence 
of technological, scientific, and soci­
etal factors makes it very likely that 
imaging will be increasingly impor­
tant to medical informatics in coming 

. years [37]. 

2. 2-D Medical Image 
Processing: Preprocessing 
and Segmentation 

Medical imaging systems almost 
never provide the radiologist with 
"raw" image signal data. Instead, vari­
ous computational preprocessing) 
methods are used to reconstruct an 
image that will give the greatest amount 
of diagnostic information to the prac­
titioner. Reconstruction methods are 
specific to the particular form of imag­
ing (whether CT, MRI, PET, or other). 
Other preprocessing typically involves 
general low-level vision methods for 
filtering and transforming the image 
data so that they are better visualized 
and easier to analyze. 

Since the early days of computingr 
researchers have been beguiled by the 
promise of using computers for c:tuto­
mating the recognition of visual pat­
terns. Analogies between human vi­
sion and machine vision motivated 
Rosenblatt's Perceptron [38], the an­
cestor of today' s artificial neural net­
works. Numerous other pattern recog­
nition methods followed [39] with 
many being applied to visual prob-
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terns such as handwriting recognition. 
In medical imaging, Lodwick [ 40] used 
Bayes' theoremforthecomputer-aided 
diagnosis of bone tumors with great 
success, after painstakingly and manu­
ally extracting features characterizing 
these tumors in radiographic images 
from 2000 cases stored in the Bone 
Sarcoma Registry of the American 
College of Surgeons. It is natural to 
characterize visual objects by sets of 
features extracted from the natural 
scene (the X-ray image) in which they 
are found. Objects are most easily 
classified by comparing their patterns 
of features. When the features are noisy 
and uncertain, this classification ap­
proach to pattern recognition is closely 
related to statistical decision making 
[39]. 

When computers became powerful 
enough, features began to be extracted 
from image data automatically. In grey­
level images, typical features could 
include measures of the intensity level 
of an object, descriptions of its bound­
ary, shape, texture, size, etc. It was 
recognized early that segmentation of 
an object from its background (every­
thing else in the scene) could be ac­
complished by either identifying are­
gion in the image corresponding to the 
object or by first identifying the bound­
ary of the object and then extracting 
the enclosed region. 

Region-based segmentation ap­
proaches became popular because they 
could be easily implemented by 
thresholding of individual pixel inten­
sity values. This works when object 
regions have uniformly high contrast 
in relation to their background (high 
signal-to-noise ratio), and well-defined 
edges. Otherwise different strategies 
of region growing or splitting need to· 
be tried. A recent review can be found 
in [41]. Boundary-based .segmenta­
tion is usually more complex, since it 
requires defining an object boundary 
in terms of edges detected in the image 
[42] . Edges can be defined in many 
Ways, the simplest being by 
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thresholding some measure of discon­
tinuity in the intensity values of the 
image, such as the gradient. In images 
of natural scenes, edges are frequently 
complex and noisy, so simple step or 
ramp models of discontinuities prove 
to be unrealistic. They may also present 
in different sizes or scales in different 
parts of a scene, with resulting diffi­
culties if we wish to apply a single 
edge-extracting operator during pre­
processing to the entire image. An 
alternative is to detectthe most rapidly 
changing part of an edge through zero 
crossings of a second derivative func­
tion (Laplacian) of the image. To re­
duce susceptibility to noise it can be 
combined with a low pass Gaussian 
filtering function [43]. A further, more 
tunable improvement is the Canny fil­
ter [ 44]. Besides edges, tissues in medi­
cal images may exhibit differences in 
texture, color, or other more complex 
features which can be used for dis­
crimination, preferably by multireso­
lution methods [45,46]. But regard­
less of the definition of edges and 
other features, medical images with 
multiple complex objects and various 
sources of noise are rarely directly 
segmentable in their entirety by any 
single method. 

For simple segmentation methods 
to have a chance of succeeding, im­
ages must be filtered first to smooth 
out noisy (high frequency) edges by 
low-pass filtering and to enhance true 
edges by high- or band-pass ftltering 
[39]. The problem, of course, is that it 
is hard to know a priori how to distin­
guish true from spurious edges. De­
spite the availability of many sophisti­
cated statistical models for edges, their 
applicability to and superiority over 
other models for particular problems 
can be ascertained only by carefully 
controlled empirical testing - which 
may be feasible with phantoms, but is 
frequently costly and not practical in 
clinical situations. 

Given the complex dependencies 
between image formation processes 

and environments it is hardly surpris­
ing that attempts to solve the general 
automatic segmentation problem have 
not been very successful. A recent 
survey of methods for object recogni­
tion in 2D images of natural scenes 
from aerial photometry, industrial in­
spection, and medicine illustrates the 
difficulties of choosing computational 
strategies for solving problems of this 
type [47]. After characterizing recog­
nition problems in terms of data and 
matching-model complexity, the au­
thors distinguish four different classes 
of computational strategies: 

1. Feature vector classification meth­
ods: These apply only to the sim­
plest problems with low data and 
model complexity (no noise and 
simple object labeling). They can 
workdirectlywiththerawdata(pixel 
classification) or with abstracted 
features or regions derived from 
them. 

2. Fitting models to noisy image data: 
Here spatial constraints describe. the 
expected structure of objects to be 
recognized and can be either fixed 
or flexible. In fixed models (like the 
Hough transform), math~matical op­
erators with predetermined global 
characteristics must be parameter­
ized for recognition. Flexible mod­
els are specified by generic con­
straints and delineate contours or 
surfaces of an object. In medical 
imaging various elastic deforma­
tion methods are used to model sur­
face contours [48]. 

3. Fitting models to symbolic struc­
tures: Scenes containing multiple 
and different types of objects are 
best modeled by descriptions of 
subparts which are, on the one hand, 
easily detected from the data and, 
on the other, easily assembled into 
the whole scene (i.e., the problem is 
decomposable, or reasonably so). 
Recognition can then be carried out 
by finding efficient search strate­
gies for the best assembly of sub-
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parts (or intermediate symbolic 
structures) that may have generated 
the image. In medical imaging such 
situations are rare. 

4. Combined strategies. With high 
complexity ofboth (noisy) data and 
model, combinations of data-driven 
and model-driven strategies are sug­
gested, with optimization of some 
subproblems (like feature extrac­
tion) feasible within a generic 
scheme for recognition. Such ap­
proaches characterize the solution 
of more abstract medical imaging 
problems - the composition of im­
age processing processes [49], the 
planning, experimental design, and 
learning of such compositions [50], 
and the indexing and retrieval of 
images according to their subpart 
arrangements [51]. 

Based on the above categorization, 
most 2D medical image recognition 
work falls into categories 1 and 2, 
since applications of recognition tech­
niques have traditionally been demon­
strated on very specific (and often 
highly delimited and idealized) imag­
ing problems. While combining strat­
egies has become more frequent in 
recent years, the computational com­
plexity of most realistic medical im­
age interpretation problems has tended 
to make their application very spe­
cific, and generalizations about broader 
applicability less than obvious. 

A very different perspective from 
recognition was taken by Marr [52] in 
his computational theory of vision. 
Using an information processing ap­
proach, he differentiated the issues of 
vision research according to whether 
they are at the level of (1) computa­
tional theory, (b) representation and 
algorithm, or (c) hardware. This ap­
proach has had a strong influence on 
the active or purposive vision methods 
applied particularly in robotics, where 
a reconstructive, top-down, model­
based approach is frequently taken to 
the design of experiments in machine 
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vision. Such approaches will have in­
creasing relevance to medical imag­
ing when it is embedded within surgi­
cal, robotic, and other controlled envi­
ronments [53]. General mathematical 
models of vision illustrate clearly how 
most 2D image recognition problems 
are ill-posed inverse problems for 
which we cannot expect to find solu­
tions without severely limiting their 
generality by problem-, method-, and 
domain-specific constraints [54]. 

3.3-D~edicaliEDage 
Processing 

In contrast to general natural scene 
recognition, medical imaging does 
provide fairly strong constraints, par­
ticularly if we use a 3D model that 
corresponds to the true underlying 
patient environment. Tomographic 
measurements in particular, yield 
highly accurate volume-averaged es­
timates of the values of actual physical 
properties of the tissue being imaged 
within each volume element, or voxel, 
of the body [55]. 

Unlike general-purpose imaging 
like photography, medical imaging 
modalities have usually been specifi­
cally refined to discriminate between 
target tissue types [56]. While still 
subject to various sources of noise, 
instrument-induced error, field-of­
view artifacts, slicing approximations, 
inadequacies in resolution, and scene 
complexity/scaling problems for cer­
tain tasks, the interpretation of sets of 
2D slice data from most 3D medical 
image acquisitions presents few prob­
lems for the experienced human ob­
server. Automatic 3D object recogni­
tion, while still unfeasible, except for 
very simple objects in standard set­
tings, may fmally be on the horizon 
due to the recent dramatic advances in 
imaging/computing hardware, graph­
ics, modeling, and visualization soft­
ware. 

For 3D visualization and analysis, 

2D data slices must be combined by 
interpolation [57 ,58], and correspond­
ing images of different modalities, 
views or times of acquisition regis­
tered [28, 59-61]. 

Various sophisticated methods for 
viewing the inherently 3D data on 2D 
screens have been developed, but gen. 
erally fall into one of two categories: 
surface and volume renderings [62-
65], though a new shell rendering 
method combines elements of the two 
[66]. Fusion of data [67,68] from mul­
tiple modalities is also frequently re­
quired for display and analysis pur­
poses. Machinearchitectures that take 
account of the needs of these 
computationally intensive methods are 
reviewed in [69]. 

A comprehensive overview of 3D 
imaging can be found in [1]; and [70] 
lists how various imaging transforma­
tions are specified according to their 
applicability to the acquired data (scene 
space), the data extracted for viewing 
(object space), theirrotations, scalings, 
and transformations (image space), and 
2D representation on a screen (view 
space). Transformations for each of 
these spaces (of scene, structure, ge­
ometry, and image, respectively) and 
mappings between them are described. 
Mappings are mostly bidirectional~ 
reflecting the emphasis of this work on 
practical interactive techniques for 
user-controlled selection of different 
operators by which images can be trans­
formed for more effective analysis (in 
a parameter space of chosen models). 
T4ese operators may be mathematical 
(such as filtering or feature selection) 
or graphical (selection of views, sub­
scenes, or rendering methods). The 
choice of analysis method (segmenta· 
tion, image transformation) is le 
largely to the user. 

The approach articulated above c 
be viewed as a new "modular architec 
tural phase" in the development o 
imaging systems. It has been pioneere 
by such systems as ANALYZE [231 
3D-VIEWNIX [24], OSIRIS [25] an · 
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VIDA [26]. Various generic methods 
for visualization, manipulation, and 
analysis of images are provided as 
modular software options, reflecting 
the maturity of the field in recognizing 
the multiplicity of context-dependent 
modes of application that are possible 
for them and the need to have effective 
flexible imaging tools for use in the 
practice of radiology. The availability 
of systems on multiple platforms 
(from workstations to PCs) at a reason­
able cost [71] promises to disseminate 
these advanced 3D imaging capabili­
ties and methods widely. 

While the above represents a retreat 
from the goal of fully automatic seg­
mentation, it can be seen as a healthy 
reaction to what is an overambitious 
and impractical undertaking for most 
imaging problems. Instead, the user is 
encouraged to apply different segmen­
tation methods to various subprob­
lems in intermediate stages of pro­
cessing. Because alternative geometri­
cal models (surface vs. volume, pro­
jection vs. slice) can be used to fuse 
multimodal, multislice, and multi view 
data spatially at different stages of 
visualization and analysis, operations 
of applying filtering, segmentation, 
feature extraction, and surface or vol­
ume estimation and rendering can be 
applied in different sequences to ob­
tain different results for a given prob­
lem [20]. Each sequence represents a 
different analysis strategy, and the 
expert image analyst must then choose 
which of the alternatives to trust the 
most, or else try to fuse them into a 
single coherent interpretation. This is 
currently left to the hum~ expert. 

Overall performance results for 
some combinations of techniques and 
studies of observer variability have 
been reported [72, 73 ], but the technol­
ogy is still too young and evaluation 
methodologies still inadequate for sys­
tem · . ahc and controlled experimenta-
tion comparing different strategies for 
a . 

giVen problem. Just defming what 
constitutes a class of problems is diffi-
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cult, as witnessed by the variability 
encountered in the literature. While 
evaluation methods from signal analy­
sis in the form of ROC curves can be 
applied to individual segmentation/ 
recognition subproblems [74], more 
sophisticated strategies will be needed 
to assess complex system usage [75]. 

In the meantime, each imaging 
modality (and combination of modali­
ties) continues to be analyzed with 
various filtering and transformation 
techniques for particular types of prob­
lems. Some applications are more gen­
eral than others. For instance, an im­
age Eigenfiltering method [76] is re­
ported to be the optimal linear filter for 
correcting partial volume effects in the 
fusion ofMRI modalities, while at the 
same time segmenting for a specified 
feature. Scale-space· techniques have 
been successfully used for interactive 
segmentation [77], and multireso­
lution methods like wavelets are 
gaining in appliability [78]. Neural 
networks have been applied with 
increasing frequency to MRI seg­
mentation [79,80]. Morphological 
[81], geometrical [82], knowledge­
directed geometrical modeling [83-
85], and knowledge-based frame­
works [49,50,86] have been tested 
with generally successful results for 
prototype systems. 

4. Medical Image Processing 
and Informatics Implications 

All the techniques of medical image 
processing are directed t? achieving 
goals in medical practice, research, 
and education. The most dramatic ap­
plication of the new visualization and 
analysis capabilities are those involv­
ing computer-assisted surgery and 
teleradiology. This work builds on a 
decade of experience with surgical 
planning and simulation guided by 3D 
imaging [87-89]. With faster imaging 
modalities and high-performance com­
puting and networking becoming more 
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reliable, cost -effective and ubiquitous, 
plans are now underway for image­
guided surgery through the superim­
position of images from prior acquisi­
tions, as well as acquisitions carried 
out during the course of the surgical 
procedure [53,90]. Another related area 
of high visibility and promise is the 
evaluation and design of prostheses 
[91], to which is now added the possi­
bility of automatic milling of prosthe­
ses by robots. 

From an informatics perspective, 
the explosion of imaging data from 
practical and research applications 
poses interesting opportunities and 
challenges. As cost-effective storage 
media capacity increases, so will the 
temptation to store all records digi­
tally. Meaningful, intelligent retrieval 
can present problems with current tech­
niques of data representation and stor­
age. While ACR-NEMA conventions 
have helped standardize communica­
tion of images between devices, they 
do not standardize anything about the 
content of an image. A review of data­
base issues in medical imaging is given 
in [92] . Indexing and retrieval of struc­
tures within images is difficult with 
most present techniques, which lack 
representations of visual objects. New 
methods of representing, indexing, and 
retrieving pictorial objects are begin­
ning to appear [51,93] and much re­
search is needed on this topic. Object­
oriented techniques for representing 
and manipulating dynamic sequences 
of visual objects, currently being de­
veloped for multimedia applications 
[94] may well prove to be essential for 
handling the processes of visualiza­
tion, manipulation, and analysis of 
images within an interactively GOD­

trolled feedback loop of surgical inter­
vention [53]. 

The construction of digital atlases 
[3-5] and other sets of visual reference 
data from the large amounts of imag­
ery being recorded in the Visible Hu­
man Project [2] and from other ana-
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tomical collections, both human and 
animal [95], requires research into its 
registration, structuring, segmentation, 
visualization, and validation. Tools for 
navigating through the great volume 
of visual data are needed [96,97], since 
such collections can range from the 
level of gross anatomy down to the 
cellular level [98]. The possibilities 
for substantive morphometric analy­
ses [99] increase as large digital image 
databases are built. 

The greatest challenge is to develop 
techniques for injecting meaning into 
large image collections through flex­
ible annotations and logs of our ."jour­
neys" through them, correlating dif­
ferent functional and structural obser­
vations with higher-level conceptual 
summarizations and interpretations. 
Developing knowledge-based meth­
ods for capturing the semantics of 
imaging sequences in their many fac­
ets and relating them to corresponding 
information from other sensory chan­
nels, promises to open a whole new 
chapter in informatics: that of imag­
ing. 
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