Decision support, Knowledge Representation and Management: A broad methodological spectrum

Findings from the Decision Support, Knowledge Representation and Management

B. Brigl, Managing Editor for the IMIA Yearbook Section on Decision Support, Knowledge Representation and Management.
University of Leipzig, Institute of Medical Informatics, Statistics and Epidemiology, Leipzig, Germany

Introduction

Decision Support, Knowledge Representation and Management comprises a broad spectrum of methodological approaches like natural language processing [1], ontologies [2], knowledge acquisition, knowledge representation, and reasoning [3], [4] as basis to build or expand application systems which support, facilitate, and improve diagnostic, therapeutic and prognostic medical decisions in various medical domains. The development of suitable methods [5] is important along with the evaluation of their correctness and adequacy [6].

Best Paper Selection

The best paper selection of articles for the section ‘Decision Support, Knowledge Representation and Management’ in the IMIA Yearbook 2006 reflects this methodological diversity, which is also expressed in previous yearbooks [7], [8]. As a result of a comprehensive reviewing process, five excellent articles were selected from four international peer reviewed journals in the fields of medical informatics. Table 1 presents the selected papers. A brief content summary of the selected best papers can be found in the appendix of this report.

Conclusions and Outlook

The best paper selection for the Yearbook section ‘decision support, knowledge representation and management’ shows that research is actively done in many different areas of interest. [9] and [10] show how important ontologies are for the successful implementation of clinical decision support systems, as basis for integrated software architectures including knowledge base, database and user interface. However, these papers also indicate that we are still far away from real functional integration with hospital-wide clinical workstations [11]. The relevance of natural language processing to detect disease outbreaks from a large amount of patient data at an early stage is demonstrated in [12], which is an important contribution to the field of syndromic surveillance. In [13] the problem of knowledge maintenance in large semantic networks is addressed. An ontology as basis for a randomized controlled trial database to support evidence-based practice is presented in [14]. On the one hand, the selected papers show that methods for...
decision support, knowledge representation and management can decisively contribute to the solution of many different medical problems. On the other hand, they indicate that a lot of exiting research still needs to be done [17].

Up-to-date information about current and future issues of the IMIA Yearbook is available at http://iig.umit.at/yearbook/

Acknowledgement

We greatly acknowledge the support of Martina Hutter and of the reviewers in the selection process of the IMIA Yearbook.

References


Chapman et al. ([12]) are engaged in a very current and important field of research: the syndromic surveillance of bioterroristic [15] or naturally-occurring disease outbreaks. They argue that free-text triage chief complaints are the earliest data on hand in a hospital information system. Consequently they apply methods for natural language processing to detect disease outbreaks. As basis they use an adapted version of the Medical Probabilistic Language
Understanding System (M+) working with a Bayesian network-based semantic model. After a training phase comprising 4700 chief complaints they evaluated the accuracy of classifying triage chief complaints into eight previously defined syndromic categories by comparing the results of M+ with those of a gold standard physician. They conclude that a natural language processing text classifier is an effective method to support syndromic surveillance.

A meta-model of chemotherapy planning in the multi-hospital/multi-trial-center-environment of pediatric oncology
Methods Inf Med 2004; 43(2): 171-83

Garde et al. ([9]) show the importance of ontologies for the development of decision support systems on the example of chemotherapeutic planning in pediatric oncology. ChemoMM – an ontology for chemotherapy planning – is the result of a long lasting evolutionary development process based on evolutionary prototyping, software engineering techniques and grounded theory, which lead to a stable, user-validated ontology. ChemoMM is basis for two application systems which support the knowledge-acquisition process for chemotherapy plans as well as protocol-based decision support. They were used in clinical routine in about 30 hospitals over many years without reported calculation errors. ChemoMM or parts of it may easily be adapted to other oncological domains as basis for chemotherapy planning systems.


Design and development of a mobile system for supporting emergency triage.

Another excellent example for a patient-specific clinical decision support system is given in [10]. Michalowski et al. designed, developed and evaluated a mobile consultant system for supporting emergency triage (MET) in the field of acute pain. The main focus was on the integration of MET with the physician’s workflow, and with the electronic patient record system. The knowledge base, as well as the user interface, are based on a specific domain ontology. The knowledge base consists of decision rules created from historical patient data. Because of the weak connectivity situation in an emergency department, they used an extended client-server-architecture, where the handheld client computer can run some functions of the server if there is no connection available. The clinical evaluation could show that the system fits well into the emergency department workflow.

Shapiro LG, Chung E, Detwiler LT, Mejino JLV, Agoncillo AV, Brinkley JF, Rosse C.
Processes and problems in the formative evaluation of an interface to the Foundational Model of Anatomy knowledge base.

The Digital Anatomist Foundational Model of Anatomy is a large semantic network of more than 100,000 anatomical terms and about 1.6 million structural relationships, which is used as knowledge source by anatomists and students. In such a large knowledge base, the evaluation for accuracy and comprehensiveness is a special challenge. For this, Shapiro et al. ([113]) developed a generic query interface focusing especially on the relationships. This query interface allows domain experts to enter both simple and relatively complex queries concerning the structural relationships among anatomical entities of the human body as a starting point for the maintenance of the knowledge base. With minor modifications, this tool may also be used for the evaluation of other large semantic networks [16].


Medical research produces about 10,000 new randomized controlled trials (RCT) each year. It is difficult to provide this evidence-based knowledge to clinicians or practitioners. To build up a RCT knowledge base, Sim et al. ([14]) developed an ontology using the competency decomposition method. With this method a top-level task - in this case the task of systematic reviewing - was decomposed into a set of subtasks, and the methods by which each subtask is supported, and the information items necessary to carry out the subtasks were identified. The resulting RCT schema contains 188 hierarchically structured classes and 601 attributes regarding details about administration, design, execution and results of RCT. In a first step, the RCT schema was used to completely capture 11 trials, and partly capture 13 others. The results show that, with some minor limitations, the RCT schema is well suited for the task of systematically reviewing RCTs.