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Summary
Objectives: Tissue microarray (TMA) techniques are among the most
promising developments in biomedicine during the last decade.
Bioinformatics techniques are indispensable for storing and process-
ing the masses of data related with tissue archive administration
and investigation of raw data. Interrelationship between experimen-
tal and computational work will be shown.
Methods: Tissue specimen arrays allow parallel analysis of huge
amounts of samples. TMA techniques thus produce enormous
masses of raw data, and optimal use of data can only be made
using modern bioinformatics techniques based on huge storage
systems, scalable multilayer software architecture and high-through-
put algorithms for retrieval and statistical processing. Further crucial
issues addressed by informatics techniques are specimen identifica-
tion during the whole processing chain, and anonymization when-
ever scientific work is performed without regard to a certain patient.
Results: TMA supported by bioinformatics methods has helped in
identification of biomarkers, mainly in cancer diagnosis. Moreover,
it provides powerful means of quality assurance and training in his-
topathology.
Conclusions: Further statistical analyses seem to be necessary to
detect if certain biomarkers are present in nearly all kinds of
specimen of the concerned patient, which would allow effective mass
screening based on easily accessible specimen. Some investigations
showed low dependence on the specimen localization, whereas
others suggest to be extremely careful in material selection for the
recipient block.
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Introduction
Ten years after completion of the first
successful genome elucidation projects
[1], [2], bioinformatics and related
techniques have achieved a new level
of maturity. In the very beginnings of
experimental efforts on the molecular
scale and of bioinformatics applica-
tions, the focus was on gaining whole
genome information of a certain spe-
cies, carried out by long-lasting
sequencing work and subsequent align-
ment. Availability of genome data of
more and more species provided a ba-
sis for similarity comparison and
phylogenetic analyses. Initial overes-
timation of therapeutic perspectives
was balanced by growing knowledge
about effects of dynamic aspects like
gene expression and regulation, lead-
ing to more and thorough investiga-
tions. Whole-species characterization
based on analysis of individual genes
(normally taken from several individu-
als) was followed by characterization
of populations and comparison be-
tween individuals [3], [4], leading to
insight into gene constellations that
are suspected to cause or to indicate
diseases. Remarkable progress has been
made on this f ield of investigation
during the last years, and huge amounts
of data rising from high-throughput
experimental work showed to be the
boon and the bane for the f ield of
bioinformatics. Large datasets are the
prerequisite for all kinds of statistical
analyses and data mining, and they re-

quire enormous efforts in data storage
and retrieval for being processed within
a certain research context.

Development of several types of
„omics” was also a remarkable step
within the last ten years. The initial
focus was clearly on DNA for several
reasons: DNA is the lead substance in
gene analysis, with DNA fragmenta-
tion and alignment being the key tech-
niques of analytical work. Moreover,
DNA gained initial attention as it was
much easier to handle due to its linear
chemical structure and clear positions
of cleavage. Later developments, how-
ever, showed the need for taking into
account the behavior of more substance
classes like nucleic acids and larger
units like proteins and glycoconjugates,
creating e.g. proteomics [5], [6],
metabolomics [7] and glycomics [8],
[9], [10] as new and fruitful f ields of
investigation.

A new methodology available of-
ten raises applications in more and
more application fields, leading to dis-
semination and interdisciplinary inves-
tigations. Proteomics revealed that the
DNA itself is just a static kind of tem-
plate, gaining physiological meaning
by gene regulation and expression phe-
nomena that decide about how and to
which extent the template is used for
protein assembly. Glycomics turned
attention to the fact that there are much
more kinds of biochemical codes [11]
besides of the protein-related mecha-
nisms that had been detected in the very
beginnings of exploring the realm.
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Bioinformatics as a special f ield of
informatics has developed now to be-
ing much more than sequence alignment
as a context-based form of pattern
matching. Actually it involves a range
of methods such as pattern recognition,
data mining, data fusion, massively
parallel computing, information re-
trieval, development and use of
ontologies, and handling of distributed
databases.

High-throughput data processing is
based on high-throughput data genera-
tion: most of the well-known and wide-
spread techniques related with bio-
informatics methodology are also
related with outstanding laboratory
techniques that have been developed
and optimized within the last years. The
most powerful and universally applied
high-throughput techniques are micro-
arrays of different types, providing a
suitable tool for many kinds of experi-
mental data generation and data col-
lection, even using existing sample
material collections, and with the abil-
ity to perform tremendous amounts of
sample investigations within a single
processing step.

Tissue Microarray Analysis, a
State-of-the-art
Representative of Modern
Bioinformatics Applications
The aforementioned aspects clearly
show that nowadays it would be quite
impossible to provide a coherent over-
view of the f ield of state-of-the-art
bioinformatics, as it actually comprises
a wealth of different methods and ap-
plications. Which subdomain could be
estimated as providing a typical single
example for the state of the art? A se-
ducing candidate is tissue microarray
(TMA) analysis, as this example stands
for a broad range of challenges that
have been faced and seized within the
last years. Therefore, microarray-re-
lated techniques as one of the most

promising, still developing and almost
indispensable issues of the field will be
discussed as a typical example of the
interdisciplinary character of modern
bioinformatics applications. Combina-
tion of laboratory and computing forces
has brought remarkable progress in the
elucidation of individual disease risk as
well as accessibility to certain drug ef-
fects with respect to genetic properties
of individual organisms. Several issues
will be discussed and presented, going
into detail concerning several aspects
that show generalization potential and
will shed light onto phenomena that can
be found throughout the f ield of mod-
ern bioinformatics with its deep liai-
son to experimental work.

Prerequisites and
Characteristics of High-
content-screening Methods
The development of high-content-
screening bioinformatics techniques is
essentially related to the availability of
appropriate high-throughput material-
processing techniques. In the very be-
ginnings of subcellular and molecular
structure analysis, over three decades
ago, not only were computers slow and
data management systems of weak per-
formance and restricted size, but prepa-
ration and processing of samples was
also restricted to manual work and low
amounts of material. The f irst meth-
ods for DNA sequencing, developed in
the early Seventies [12], required huge
quantities of sample material and rea-
gents and long time to perform. Nearly
twenty years later it was possible and
roughly affordable to perform complete
genome analyses, and another ten years
later, this kind of work has nearly be-
come an everyday’s task that can be
performed for groups of individuals to
compare their samples at reasonable
cost and feasible time scale. RNA and
glycoconjugates seemed to resist to au-
tomatic analytical processing for re-
markably long time, and examination

of complex tissue structures seemed to
be restricted to optical perception and
application of a few reaction-specif ic
analyses. Early automation efforts still
were restricted to linear processing, but
already worked with small sample tubes
and lower amounts of sample and rea-
gent material.

Later development brought micro-
arrays as a kind of multidimensional
arrangement of samples in order to
achieve fast processing. Acceleration,
however, was not the only goal that had
been intended. An additional core is-
sue that could be addressed was com-
bination and comparison of samples
according to their arrangement within
the sample matrix, treating it as a kind
of addressable array like a data struc-
ture. Several techniques have been de-
veloped within the last decade that work
using sequential and geometrically sepa-
rated sample positioning in different
kinds of arrangement. Solid-state tech-
niques help in gaining data in a context
that shows higher relevance with respect
to target binding or selectivity.

The scope of (micro)array tech-
niques cannot be overestimated, taking
into account that they can cope with
macroscopic biological matter (tissue
microarray, TMA) [13], [14], and even
with matter that had been extracted and
preserved considerable time before in-
vestigation. This capability leads for-
ward on the way towards multipurpose
reuse of data, as it allows to go beyond
interpretation of possibly incomplete,
inexact and distorted data records and
generate experimental results with new
accuracy and a high degree of compa-
rability, in certain cases diminished by
material alterations due to age and prop-
erties of the preservation agents [27].

Arrays in analytical biochemistry and
biomedicine can be classified into sev-
eral types. Mainly tissue microarrays
will be discussed further in this work
due to their high relevance to bioinfor-
matics. Of course they are mostly in-
terrelated with complementary array
technologies such as nucleic acid arrays,
dependent on the respective biomedi-
cal objectives. Most arrays are micro-
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arrays, but there are also macroarray
applications  [15]. Chemical (substance)
microarrays [16] based on liquid or
solid-state sample material also repre-
sent a relevant type of array-based in-
vestigation of biomedical phenomena.
TMA results are often combined with
those gained by substance array analy-
sis, e.g. when detecting biomarkers.
Cellular microarrays [17] can be con-
sidered as a kind of bridge between
them, as they do not represent tissue
structures and therefore do not deliver
their typical histological images, but
already are complete biological systems
with functional and kinetic aspects and
with comparable analytical relevance in
some main aspects.

From the mid-Eighties on, several
techniques had been developed that gain
and arrange the tissue sample material
in different ways and can use tissue
material in different preservation states
(mostly embedded in paraff in blocks,
in some cases frozen), freshly prepared
via different biopsy techniques or de-
rived from xenografts (XMA) or cell
lines (CMA). Eguíluz et al. [18] pro-
vide a comprehensive overview of al-
most all of the experimental techniques
available and of their benef its and
shortcomings. The f irst micro scale
sampling attempt was based on rod-
shaped samples taken from donor
blocks combined to a sausage-like ar-
rangement in the recipient block [19],
[20]. Battifora optimized the sausage
block type [21], and Kallioniemi and
Sauter et al. [22] introduced the recipi-
ent block of core-shaped donor block
samples from which all later types of
TMA were derived. Core-shaped sam-
ples showed remarkable advantages in
sample gaining and assembly of the
recipient block and therefore now are
the basic principle for most tissue
microarray techniques. The following
years brought quick and fruitful diver-
sification, addressing special challenges
of sample gaining and preparation of
fresh and preserved material based on
paraff in-embedded or frozen material,
arranging the samples according to sev-
eral analytical tasks (combining vari-

ous samples of a single individual or
histologically similar samples from sev-
eral individuals), and application of
different staining methods in order to
achieve optimal accessibility to auto-
matic pattern recognition methods.

Microscaled amounts of material
could hide the fact that they produce
macroscaled amounts of data and make
processing a challenge that can only be seized
by means of specialized and scalable high-
content-screening informatics [23].

Taking into account the multitude of
tissue cores on one TMA slide just pro-
vides a rough number of circa hundred
to more than thousand basic data en-
tries per slide. This number of data en-
tries, however, is multiplied by each
parameter and step of analysis, such as
the matrix of image pixels on the im-
ages of each sample core, number of
photographs (from pre-array donor
block images to several TMA photo-
graphs), multitude of image channels
that are used to highlight different cell
parts using appropriate wavelengths of
light, plus some scalar parameters (only
one value per core and per slide, re-
spectively), eventually multiplied by
the number of time snapshots that are
performed in case of a kinetic study. A
single tissue core can thus produce hun-
dreds of Megabytes of primary data,
and primary data normally are proc-
essed using statistical methods in order
to derive parameters for the overall
description of analysis entities, and for
the comparison of entities. Additional
metadata are necessary in order to de-
scribe experimental parameters like
source and age of material, reagents,
staining agents and experimental con-
ditions, proceeding of embedding and
block formation, temperature, analysis
methods, and sampling rate as well as
compression factors. Taken together,
already very short sequences of analy-
ses lead to data amounts in the Gigabyte
and Terabyte range. According to legal
and scientif ic requirements, the data
must be stored on highly available or
long-time-range media and, if neces-
sary, in redundant copies. Storage Area
Networks (SAN) or comparable stor-

age architecture structures like RAID
systems have to be used in order to en-
sure data security and availability. This
holds especially for data that have to
be recorded as parts of pharmaceutical
studies related to drug safety and for
studies lasting for a long period. Rela-
tion with clinical patient data evolves
the need of data protection, restricting
access to complete data sets (including
personal data) to very few concerned
persons and high conf identiality. Stor-
age, however, is just one face of the
medal. Retrieval is the crucial part of
the process that decides about potential
and relevance of a study and that de-
termines the quality of scientific work.
This issue is not as obvious as data stor-
age, but has evolved remarkably within
the last thirty years and has influenced
the way of scientific work based on data
comparison and derivation of data taken
from different sets of primary data. File
management systems and early database
systems lacked of retrieval power, pro-
viding not more than handling complete
f iles composed from data entries or
related to one single data entity, but
without an external view of the inher-
ent data structure and certain attribute
values. Analysis procedures related to
data subsets required reading data files
completely and sequentially by multi-
pass parsers, extracting the relevant data
sets slowly and with high risk of in-
completeness of the result set. Grow-
ing data amounts raised the necessity
of deriving descriptors that could be
used for dividing up the retrieval proc-
ess into quick prescreening of a small
amount of structured descriptive pa-
rameters for all entries, followed by
slow sequential reading of the complete
data of the candidate entry subset that
had been filtered during the pre-screen-
ing process [24]. Automatic derivation
and machine-readable representation of
suitable descriptors was a main issue
that had first been addressed for chemi-
cal structure-based databases like those
of Chemical Abstracts Service (CAS)
[25]. For long years, the data storage
systems were file management systems,
later on they were implemented as da-
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tabase systems [26], offering the pos-
sibility for establishing a multilayer
architecture with functional separation
of data storage, processing and presen-
tation layer. This kind of architecture
(sometimes referred to as three-tier ar-
chitecture) allows changing separately
the different layer applications without
influencing the remaining part of the
system. The transition from f ile man-
agement systems to database manage-
ment systems, however, did not neces-
sarily involve direct access to data. The
first database attempts were based on a
data split that kept descriptive and de-
rived data within the database and ac-
cording to a highly structured database
schema, whereas primary data such as
image data and comparably large units
of experimental result data were stored
as separate f iles, only related with the
database content by means of access
keys and index f iles. This meant that
primary data were not accessible to re-
trieval algorithms and could still only
be found by a secondary access guided
by prescreening processes. It was only
during the last few years that comput-
ing power became sufficient enough to
enable the retrieval process to be di-
rectly performed on the complete data.
This is a progress in investigation qual-
ity and intensity that cannot be overes-
timated, as it had been common for
decades not only to keep primary data
separately, thus restricting the retrieval
possibilities, but for long time primary
data even were compressed with con-
siderable loss of resolution or other
quality issues, or completely rejected
after derivation of metadata, thus mak-
ing it diff icult or impossible to reuse
experimentally obtained data. This
problem shows how especially precious
collections of preserved tissues are, as
they allow performing experiments
again that can deliver data related to
the past that originally had not been
stored in digital form or that had been
compressed with inacceptable loss of
data quality. On the other hand, remark-
ably high effort has to be made in or-
der to ensure identity of donor blocks
and identity of certain cores on a slide

of hundreds of cores. Especially access
faults on slides prepared from speci-
men taken from several individuals
could lead to wrong mapping of histo-
logical f indings to patients and cause
wrong diagnoses. Rimm et al. [27] re-
port they use RFID labels  embedded
into the archived donor blocks in order
to ensure correct identif ication. The
identity issue is a challenge that could
hardly be addressed without the means
of informatics technologies.

Further remarkable progress was
fostered by sharing and providing col-
lections of experimentally obtained
data. One of the first models for com-
prehensive data sharing was founded by
the Cambridge Crystallographic Data
Center, collecting and curating all mo-
lecular data structure sets in a database
that had been obtained by means of dif-
fraction experiments and that had been
published in scientif ic journals [28],
[29]. Later similar attempts ensured that
protein structure data were made avail-
able to the public (Brookhaven Protein
Databank, http://www.pdb.org, [30]),
followed by more and more data col-
lections for specif ic substance classes
like carbohydrates (http://glycome-
db.org/ [31]) or with specif ic biologi-
cal function (enzymes, http://
expasy.org/enzyme/ [32]).

NCBI (http://www.ncbi.nlm.nih.gov
[33]) nowadays presents an outstand-
ing portal for life sciences, having de-
veloped from running a merely biblio-
graphic reference database (Medline /
PubMed) to a platform providing data
collections and algorithms for a broad
range of scientif ic work (http://
www.ncbi.nlm.nih.gov/guide/all/). Al-
though it is mainly perceived as and
indeed remains the largest bibliographic
database in the field of biomedicine and
related disciplines, covering thousands
of journals and offering powerful re-
trieval tools, its outstanding value arises
from the excellent workbench composed
from a wealth of experimental data
collections and analysis tools, offering
alignment and further types of sequence
analysis and comparison, providing
ontologies and further types of descrip-

tive tools, and data collections that can
be directly accessed via excellent and
comfortable retrieval surfaces.

It is not surprising that the NCBI
portal contains more than thousands of
bibliographic entries concerning TMA-
related work. A search performed on
all databases shows multiple occurrences
in all theme-related databases, showing
which kinds of research are carried out
based on TMA analysis. Up to now
there is, however, no database dedicated
to tissue microarray data. Although
GEO [34], the database for high-
throughput functional genome data,
seems to possess a data structure that
could accommodate not only DNA and
similar array data, but also TMA data,
it does not contain explicit TMA im-
age data, although its gene expression
data are strongly related to TMA find-
ings and frequently are used in the in-
terpretation of TMA results.

Special software tools for TMA
management and data collections dedi-
cated to TMA performance and analy-
sis have been developed during the last
years. Some of them are commercially
available (SlidePath [35], Aperio [36]),
some are open source tools (TmaDB
[37], eSlide Suite [38], TAMEE [39]
and TIMAN [40]). They differ in the
tasks they can support and automati-
cally perform, most of them deal with
storage and data mining, some can also
handle clinical patient data and support
experiment planning. TMA databases
can store TMA-related data, but nor-
mally are more comprehensive, involv-
ing ontology formats and tools support-
ing several stages of the experimental
process and for data processing and
mining. The Stanford Tissue Microar-
ray Database [41] (TMAD, http://
tma.stanford.edu) is a well-known ex-
ample that is dedicated to sharing tis-
sue collection (image) data and derived
tissue expression data, providing access
to Stanford scientists and to the public.
Marinelli et al. subsequently enhance
the TMAD-related tool collection, pro-
viding e.g. statistical tools. Viti et al.
[42] present a different approach,
TMARep, referring to TMAD but
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claiming to provide even better inves-
tigation performance by closely inte-
grating ontology data (Open Biomedi-
cal Ontology, OBO, and OLS service),
MeSH, and image data. Wang et al. [43]
propose a wiki-based approach,
ArrayWiki, and state that wiki-type im-
plementations are more likely to provide
appropriate means for the comprehen-
sive curation work that has to be per-
formed by producers and users of data.

The Human Protein Atlas (http://
www.proteinatlas.org/) [44], [45] is a
comprehensive portal providing a large
collection of images. According to its
self-description it is „a publicly avail-
able database with millions of high-
resolution images showing the spatial
distribution of proteins in 48 different
normal tissues and 20 different cancer
types as well as 47 different human cell
lines.“ Beyond experimental data it
provides a „dictionary” section with
annotation dictionary and tissue dic-
tionary showing histological tissue im-
ages according to anatomic tissue lo-
calization or cancer type. This service
provides more help to learners than other
data sources do.

The following section will show some
types of approaches and some examples
of investigation and new insight into bio-
logical processes gained by using some
kinds of the above-mentioned tools.

Relevance of TMA Techniques
in Modern Diagnostics and
Medical Education
TMA techniques have helped to im-
prove research in existing realms and
remarkably extended the f ields of ap-
plication to issues related with cancer
research, elucidation of development
processes, transcriptomics, proteomics,
interpretation of expression data, and
detection of biomarkers. In addition,
TMA results can help in teaching and
provide better means for quality assur-
ance with appropriately designed recipi-
ent blocks that help novices in compar-

ing tissues und laboratories to verify
their preparation, staining and process-
ing routines.

Among the large amounts of projects
reported within the last years, just a few
typical examples related to elucidation
of human cancer genes will be outlined,
thus neglecting e.g. work related with
model organisms that will surely affect
research on human cancers in the near
future, but apparently are not directly
related to clinical f indings.

First approaches mainly aimed to
detect specif ic biomarkers related to
certain diseases and disease states with
a strong focus on cancers. Recent work
remarkably goes beyond, addressing
questions of specimen specif icity with
respect to biomarkers or gene expression
variation across specimens taken from
several regions of tumor material [46].

Rimm et al. [27] give a comprehen-
sive overview on discovery and valida-
tion of cancer biomarkers  on the occa-
sion of the ten year anniversary of
modern TMA in 2008. They provide a
bibliometric diagram showing the ris-
ing number of TMA-related articles and
the rising percentage of immunohisto-
chemical (IHC) biomarker studies re-

ferring to TMA-based work. Their
f indings reveal that thorough handling
and storage of archival material and
semi-assembled recipient structures can
prevent specimens from loosing anti-
genicity against some antibodies, but
that experimental results can be re-
markably biased by neglecting these
prerequisites.

Several investigators [27], [46], [47]
addressed the issue of tissue heteroge-
neity and its impact on detecting re-
lated biomarkers. The extremely small
volumes of tissue material were sus-
pected not to represent the tumor struc-
ture appropriately, namely with respect
to the concentration of tumor cells and,
hence, of the respective biomarker. It
could be clearly demonstrated in many
cases, however, that TMA histospots
were as representative as their respec-
tive entire histological section [48],
[49]. Butte et al. [47] even state that,
according to their evaluation of several
studies, there is strong evidence that for
many types of diseases the signature of
a disease is robust irrespective of the
tissue in which it was studied. They
carried out a systematic evaluation on
GEO data to evaluate the robustness of

Table 1   Overview of TMA tools and databases

Name

Aperio [36]
ArrayWik [43]

eSlideSuit [38]

SlidePath [35]
TAMEE [39]

TIMAN [40]

TMAD [41]

TmaDB [37]
TMARep [42]

Human Protein
Atlas [44, 45]

Source

www.aperio.com
http://arraywiki.bme.gatech.edu/index.php/
Main_Page
http://www.eslide.net/suite/

www.slidepath.com
http://genome.tugraz.at/Software/TAMEE

http://mitel.dimi.uniud.it/timan/

http://tma.stanford.edu

http://www.bioinformatics.leeds.ac.uk/tmadb
http://www.itb.cnr.it/tmabiorep/

http://www.proteinatlas.org

Functionality

virtual microscopy, automatic Slide scanning
sharing public microarray data repositories and meta-analyses

set of tools for acquisition, preparation and visualization of digital
slides
virtual microscopy, automatic Slide scanning
web-based database application for the management and analysis
of data resulting from the production and application of TMAs
web-based system basing on open-source software and principles,
for pathology cases
stores raw and processed data from Tissue Microarray experiments
along with their corresponding stained tissue images. provides
methods for data retrieval, grouping of data, analysis and
visualization as well as export to standard formats
comprehensive repository for TMA data
managing bio-samples and, through the use of ontologies, enable
tissue sharing aimed at the design of Tissue MicroArray experiments
and results evaluation
comprehensive portal providing a large collection of tissue images,
dictionary section



80

IMIA Yearbook of Medical Informatics 2010

Lang

the disease signal across tissues and
experiments. Their f indings suggest a
degree of trans-tissue nature of disease
concordance that makes it reasonable
to leverage public data to search for
biomarkers in easily accessible cell
material like blood. Park et al. [50],
however, found that normal epithelial
and stromal tissue adjacent to tumor
tissue, taken from patients with breast
cancer, did not show signif icant gene
expression changes. Obviously, further
studies should be carried out on this
question in order to find out more about
the degrees of interrelationship of „hot
spot” tissue and certain signal states of
gene expression or biomarkers.

Discussion
TMA-based work has influenced the
understanding of diseases in a way that
could hardly be expected only ten years
ago. Traditional histology-based diag-
noses using single-slide material were
very cumbersome, required high
amounts of material and high experi-
ence in staining, preparing, and inter-
pretation of tumor material. Moreover,
specimen regions had to be chosen very
carefully, as visible differences in tis-
sue appearance were required for the
correct detection of aberrances. Tissue
material of certain individuals could
hardly be compared with histologically
similar material of other individuals,
as variations in staining and preserva-
tion made comparison nearly impossi-
ble. Assembly of large numbers of tis-
sue cores on one recipient block could
overcome problems with different
intensities of staining and could build
ensembles of samples representing ei-
ther a multitude of sample regions taken
from one individual tissue preparation,
or a multitude of tissues taken from a
multitude of individuals under compa-
rable histologic conditions. These ar-
ray-type ordered ensembles enabled and
improved research, teaching and qual-
ity assurance. Performing crucial steps
like staining for whole slides  instead

of single specimens avoided scattering
of experimental conditions and enabled
automated high-throughput processing
of array slides. A remarkable number
of cancer types could be assessed iden-
tifying distinctive gene expression pat-
terns and biomarkers, opening new
possibilities for the distinction between
normal, conspicuous, and early-cancer-
state tissue.  Recent work is dedicated
to the question of interdependence of
specimen origin and gene expression or
biomarker intensity in several diseases.
A number of findings show low tissue-
type specificity for certain diseases, thus
promising simple assays based on eas-
ily available kinds of specimen that
could be used for the development of
feasible prescreening tests that could
help in early and reliable detection of
widespread cancer types. Some tumor
types, however, seem to show highly
region-dependent expression prof iles,
requiring high specif icity in the elec-
tion of sample material. Growing ar-
chives of tissue material and of data
collections related to documented TMA
work promise to foster further investi-
gations on this crucial issue.

Conclusions
Bioinformatics is one of the f ields of
applied computer science that is most
deeply interrelated with experimental
biomedical science. Vice versa, tissue
microarray applications can hardly be
imagined without the help of infor-
matics from experiment planning to
data storage, administration of donor
block arrays and multi-sample slides,
and statistical applications for deriva-
tion of metadata and cross-study f ind-
ings. TMA, together with related array
techniques like nucleic acid arrays, has
enhanced diagnostic progress, quality
assessment in laboratories and training
in histology within the last ten years to
an extent that could hardly be imag-
ined before. With regard to bioinfor-
matics methodology, the main f inding
is that obviously no completely new

methods had to be developed in order
to achieve the challenges rising in the
field of TMA applications. Progress lies
in the enhancement and the combina-
tion of core techniques, in the adop-
tion of applications taken from other
f ields (e.g. identif ication of items,
originally developed in the field of lo-
gistics), and in the remarkable success
of ensuring scalability via application of
appropriate software architecture design.
Thus, TMA applications show in detail
the degree of maturity that bio-
informatics methodology has achieved
in the large.
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