Semin Musculoskelet Radiol 2018; 22(02): 225-236
DOI: 10.1055/s-0038-1639484
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Advanced Imaging in the Diagnosis of Gout and Other Crystal Arthropathies

James Teh
1   Department of Radiology, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
,
Fiona McQueen
2   Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
,
Iris Eshed
3   Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
,
Athena Plagou
4   Department of Radiology, Private Institution of Ultrasonography, Athens, Greece
,
Andrea Klauser
5   Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
› Author Affiliations
Further Information

Publication History

Publication Date:
19 April 2018 (online)

Abstract

In recent years significant advances have been made in imaging techniques. Dual-energy computed tomography has revolutionized the ability to detect and quantify gout. The key ultrasound features of gout have been defined. Magnetic resonance imaging is an excellent modality for demonstrating the extent and severity of crystal arthropathies, but the findings may be nonspecific. This article summarizes the use of advanced imaging techniques in the diagnosis and assessment of gout and other crystal arthropathies.

 
  • References

  • 1 Girish G, Glazebrook KN, Jacobson JA. Advanced imaging in gout. AJR Am J Roentgenol 2013; 201 (03) 515-525
  • 2 Omoumi P, Zufferey P, Malghem J, So A. Imaging in gout and other crystal-related arthropathies. Rheum Dis Clin North Am 2016; 42 (04) 621-644
  • 3 Kuo C-F, Grainge MJ, Zhang W, Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol 2015; 11 (11) 649-662
  • 4 Winnard D, Wright C, Taylor WJ. , et al. National prevalence of gout derived from administrative health data in Aotearoa New Zealand. Rheumatology (Oxford) 2012; 51 (05) 901-909
  • 5 Dalbeth N, Clark B, McQueen F, Doyle A, Taylor W. Validation of a radiographic damage index in chronic gout. Arthritis Rheum 2007; 57 (06) 1067-1073
  • 6 Neogi T, Jansen TLTA, Dalbeth N. , et al. 2015 Gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Am Rheum Dis 2015; 74: 1789-1798
  • 7 Bloch C, Hermann G, Yu TF. A radiologic reevaluation of gout: a study of 2,000 patients. AJR Am J Roentgenol 1980; 134 (04) 781-787
  • 8 Martel W. The overhanging margin of bone: a roentgenologic manifestation of gout. Radiology 1968; 91 (04) 755-756
  • 9 Choi MH, MacKenzie JD, Dalinka MK. Imaging features of crystal-induced arthropathy. Rheum Dis Clin North Am 2006; 32 (02) 427-446 , viii
  • 10 Recht MP, Seragini F, Kramer J, Dalinka MK, Hurtgen K, Resnick D. Isolated or dominant lesions of the patella in gout: a report of seven patients. Skeletal Radiol 1994; 23 (02) 113-116
  • 11 Rodríguez Leal CM, Almodóvar R, Zarco P, Mazzuchelli R, Quirós FJ. Intrabony tibial tophi in chronic gout. Reumatol Clin 2012; 8 (05) 294-297
  • 12 Rettenbacher T, Ennemoser S, Weirich H. , et al. Diagnostic imaging of gout: comparison of high-resolution US versus conventional X-ray. Eur Radiol 2008; 18 (03) 621-630
  • 13 Plagou A, Teh J, Grainger AJ. , et al. Recommendations of the ESSR Arthritis Subcommittee on Ultrasonography in Inflammatory Joint Disease. Semin Musculoskelet Radiol 2016; 20 (05) 496-506
  • 14 Sudoł-Szopińska I, Jans L, Teh J. Rheumatoid arthritis: what do MRI and ultrasound show. J Ultrason 2017; 17 (68) 5-16
  • 15 Dalbeth N, Schauer C, Macdonald P. , et al. Methods of tophus assessment in clinical trials of chronic gout: a systematic literature review and pictorial reference guide. Ann Rheum Dis 2011; 70 (04) 597-604
  • 16 Puig JG, de Miguel E, Castillo MC, Rocha AL, Martínez MA, Torres RJ. Asymptomatic hyperuricemia: impact of ultrasonography. Nucleosides Nucleotides Nucleic Acids 2008; 27 (06) 592-595
  • 17 Wakefield RJ, Balint PV, Szkudlarek M. , et al; OMERACT 7 Special Interest Group. Musculoskeletal ultrasound including definitions for ultrasonographic pathology. J Rheumatol 2005; 32 (12) 2485-2487
  • 18 Grassi W, Okano T, Filippucci E. Use of ultrasound for diagnosis and monitoring of outcomes in crystal arthropathies. Curr Opin Rheumatol 2015; 27 (02) 147-155
  • 19 Schueller-Weidekamm C, Schueller G, Aringer M, Weber M, Kainberger F. Impact of sonography in gouty arthritis: comparison with conventional radiography, clinical examination, and laboratory findings. Eur J Radiol 2007; 62 (03) 437-443
  • 20 Wright SA, Filippucci E, McVeigh C. , et al. High-resolution ultrasonography of the first metatarsal phalangeal joint in gout: a controlled study. Ann Rheum Dis 2007; 66 (07) 859-864
  • 21 Lee YH, Song GG. Diagnostic accuracy of ultrasound in patients with gout: a meta-analysis. Semin Arthritis Rheum 2017; September 28 (Epub ahead of print)
  • 22 Teh J, Østergaard M. What the rheumatologist is looking for and what the radiologist should know in imaging for rheumatoid arthritis. Radiol Clin North Am 2017; 55 (05) 905-916
  • 23 Gerster JC, Landry M, Dufresne L, Meuwly JY. Imaging of tophaceous gout: computed tomography provides specific images compared with magnetic resonance imaging and ultrasonography. Ann Rheum Dis 2002; 61 (01) 52-54
  • 24 Choi HK, Al-Arfaj AM, Eftekhari A. , et al. Dual energy computed tomography in tophaceous gout. Ann Rheum Dis 2009; 68 (10) 1609-1612
  • 25 McQueen FM, Doyle A, Dalbeth N. Imaging in gout—what can we learn from MRI, CT, DECT and US?. Arthritis Res Ther 2011; 13 (06) 246
  • 26 Terslev L, Gutierrez M, Christensen R. , et al; OMERACT US Gout Task Force. Assessing elementary lesions in gout by ultrasound: results of an OMERACT patient-based agreement and reliability exercise. J Rheumatol 2015; 42 (11) 2149-2154
  • 27 Gutierrez M, Schmidt WA, Thiele RG. , et al; OMERACT Ultrasound Gout Task Force group. International Consensus for ultrasound lesions in gout: results of Delphi process and web-reliability exercise. Rheumatology (Oxford) 2015; 54 (10) 1797-1805
  • 28 Filippucci E, Riveros MG, Georgescu D, Salaffi F, Grassi W. Hyaline cartilage involvement in patients with gout and calcium pyrophosphate deposition disease. An ultrasound study. Osteoarthritis Cartilage 2009; 17 (02) 178-181
  • 29 Pineda C, Amezcua-Guerra LM, Solano C. , et al. Joint and tendon subclinical involvement suggestive of gouty arthritis in asymptomatic hyperuricemia: an ultrasound controlled study. Arthritis Res Ther 2011; 13 (01) R4
  • 30 De Miguel E, Puig JG, Castillo C, Peiteado D, Torres RJ, Martín-Mola E. Diagnosis of gout in patients with asymptomatic hyperuricaemia: a pilot ultrasound study. Ann Rheum Dis 2012; 71 (01) 157-158
  • 31 Dalbeth N, Pool B, Gamble GD. , et al. Cellular characterization of the gouty tophus: a quantitative analysis. Arthritis Rheum 2010; 62 (05) 1549-1556
  • 32 Johnson TRC, Krauss B, Sedlmair M. , et al. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007; 17 (06) 1510-1517
  • 33 Glazebrook KN, Kakar S, Ida CM, Laurini JA, Moder KG, Leng S. False-negative dual-energy computed tomography in a patient with acute gout. J Clin Rheumatol 2012; 18 (03) 138-141
  • 34 Buckens CF, Terra MP, Maas M. Computed tomography and MR imaging in crystalline-induced arthropathies. Radiol Clin North Am 2017; 55 (05) 1023-1034
  • 35 Ahmad Z, Gupta AK, Sharma R, Bhalla AS, Kumar U, Sreenivas V. Dual energy computed tomography: a novel technique for diagnosis of gout. Int J Rheum Dis 2016; 19 (09) 887-896
  • 36 Bongartz T, Glazebrook KN, Kavros SJ. , et al. Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis 2015; 74 (06) 1072-1077
  • 37 Manger B, Lell M, Wacker J, Schett G, Rech J. Detection of periarticular urate deposits with dual energy CT in patients with acute gouty arthritis. Ann Rheum Dis 2012; 71 (03) 470-472
  • 38 Baer AN, Kurano T, Thakur UJ. , et al. Dual-energy computed tomography has limited sensitivity for non-tophaceous gout: a comparison study with tophaceous gout. BMC Musculoskelet Disord 2016; 17: 91
  • 39 Melzer R, Pauli C, Treumann T, Krauss B. Gout tophus detection—a comparison of dual-energy CT (DECT) and histology. Semin Arthritis Rheum 2014; 43 (05) 662-665
  • 40 Dalbeth N, House ME, Aati O. , et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann Rheum Dis 2015; 74 (05) 908-911
  • 41 Palmer DG, Highton J, Hessian PA. Development of the gout tophus. An hypothesis. Am J Clin Pathol 1989; 91 (02) 190-195
  • 42 Perez-Ruiz F, Naredo E. Imaging modalities and monitoring measures of gout. Curr Opin Rheumatol 2007; 19 (02) 128-133
  • 43 McQueen FMF, Doyle AJ, Reeves Q, Gamble GD, Dalbeth N. DECT urate deposits: now you see them, now you don't. Ann Rheum Dis 2013; 72 (03) 458-459
  • 44 Gruber M, Bodner G, Rath E, Supp G, Weber M, Schueller-Weidekamm C. Dual-energy computed tomography compared with ultrasound in the diagnosis of gout. Rheumatology (Oxford) 2014; 53 (01) 173-179
  • 45 Mallinson PI, Coupal T, Reisinger C. , et al. Artifacts in dual-energy CT gout protocol: a review of 50 suspected cases with an artifact identification guide. AJR Am J Roentgenol 2014; 203 (01) W103-W109
  • 46 Carr A, Doyle AJ, Dalbeth N, Aati O, McQueen FM. Dual-energy CT of urate deposits in costal cartilage and intervertebral disks of patients with tophaceous gout and age-matched controls. AJR Am J Roentgenol 2016; 206 (05) 1063-1067
  • 47 Choi HK, Burns LC, Shojania K. , et al. Dual energy CT in gout: a prospective validation study. Ann Rheum Dis 2012; 71 (09) 1466-1471
  • 48 Shi D, Xu J-X, Wu H-X, Wang Y, Zhou Q-J, Yu R-S. Methods of assessment of tophus and bone erosions in gout using dual-energy CT: reproducibility analysis. Clin Rheumatol 2015; 34 (04) 755-765
  • 49 Rajan A, Aati O, Kalluru R. , et al. Lack of change in urate deposition by dual-energy computed tomography among clinically stable patients with long-standing tophaceous gout: a prospective longitudinal study. Arthritis Res Ther 2013; 15 (05) R160
  • 50 Dalbeth N, Choi HK. Dual-energy computed tomography for gout diagnosis and management. Curr Rheumatol Rep 2013; 15 (01) 301
  • 51 Modjinou DV, Krasnokutsky S, Gyftopoulos S. , et al. Comparison of dual-energy CT, ultrasound and surface measurement for assessing tophus dissolution during rapid urate debulking. Clin Rheumatol 2017; 36 (09) 2101-2107
  • 52 Dhanda S, Jagmohan P, Quek ST. A re-look at an old disease: a multimodality review on gout. Clin Radiol 2011; 66 (10) 984-992
  • 53 Popp JD, Bidgood Jr WD, Edwards NL. Magnetic resonance imaging of tophaceous gout in the hands and wrists. Semin Arthritis Rheum 1996; 25 (04) 282-289
  • 54 Yu JS, Chung C, Recht M, Dailiana T, Jurdi R. MR imaging of tophaceous gout. AJR Am J Roentgenol 1997; 168 (02) 523-527
  • 55 Poh YJ, Dalbeth N, Doyle A, McQueen FM. Magnetic resonance imaging bone edema is not a major feature of gout unless there is concomitant osteomyelitis: 10-year findings from a high-prevalence population. J Rheumatol 2011; 38 (11) 2475-2481
  • 56 McQueen FM. A vital clue to deciphering bone pathology: MRI bone oedema in rheumatoid arthritis and osteoarthritis. Ann Rheum Dis 2007; 66 (12) 1549-1552
  • 57 McQueen FM, Doyle A, Reeves Q. , et al. Bone erosions in patients with chronic gouty arthropathy are associated with tophi but not bone oedema or synovitis: new insights from a 3 T MRI study. Rheumatology (Oxford) 2014; 53 (01) 95-103
  • 58 Ito K, Minamimoto R, Morooka M, Kubota K. A case of gouty arthritis to tophi on 18F-FDG PET/CT imaging. Clin Nucl Med 2012; 37 (06) 614-617
  • 59 Wimmer G, Stoecklegger S, Stojakovic T, Hofer J, Pichler R. Evaluation of tophaceous gout by FDG-PET/CT and bone scan. Curr Mol Imaging 2013; 2 (02) 117-119
  • 60 Cardoso FN, Omoumi P, Wieers G. , et al. Spinal and sacroiliac gouty arthritis: report of a case and review of the literature. Acta Radiol Short Rep 2014; 3 (08) 2047981614549269
  • 61 Popovich T, Carpenter JS, Rai AT, Carson LV, Williams HJ, Marano GD. Spinal cord compression by tophaceous gout with fluorodeoxyglucose-positron-emission tomographic/MR fusion imaging. AJNR Am J Neuroradiol 2006; 27 (06) 1201-1203
  • 62 Steinbach LS. Calcium pyrophosphate dihydrate and calcium hydroxyapatite crystal deposition diseases: imaging perspectives. Radiol Clin North Am 2004; 42 (01) 185-205 , vii
  • 63 Steinbach LS, Resnick D. Calcium pyrophosphate dihydrate crystal deposition disease: imaging perspectives. Curr Probl Diagn Radiol 2000; 29 (06) 209-229
  • 64 Resnick D, Niwayama G, Goergen TG. , et al. Clinical, radiographic and pathologic abnormalities in calcium pyrophosphate dihydrate deposition disease (CPPD): pseudogout. Radiology 1977; 122 (01) 1-15
  • 65 Bouvet JP, le Parc JM, Michalski B, Benlahrache C, Auquier L. Acute neck pain due to calcifications surrounding the odontoid process: the crowned dens syndrome. Arthritis Rheum 1985; 28 (12) 1417-1420
  • 66 Oka A, Okazaki K, Takeno A. , et al. Crowned dens syndrome: report of three cases and a review of the literature. J Emerg Med 2015; 49 (01) e9-e13
  • 67 Constantin A, Marin F, Bon E, Fedele M, Lagarrigue B, Bouteiller G. Calcification of the transverse ligament of the atlas in chondrocalcinosis: computed tomography study. Ann Rheum Dis 1996; 55 (02) 137-139
  • 68 Filippou G, Frediani B, Gallo A. , et al. A “new” technique for the diagnosis of chondrocalcinosis of the knee: sensitivity and specificity of high-frequency ultrasonography. Ann Rheum Dis 2007; 66 (08) 1126-1128
  • 69 Naredo E, Iagnocco A. One year in review 2017: ultrasound in crystal arthritis. Clin Exp Rheumatol 2017; 35 (03) 362-367
  • 70 Gamon E, Combe B, Barnetche T, Mouterde G. Diagnostic value of ultrasound in calcium pyrophosphate deposition disease: a systematic review and meta-analysis. RMD Open 2015; 1 (01) e000118
  • 71 Barskova VG, Kudaeva FM, Bozhieva LA, Smirnov AV, Volkov AV, Nasonov EL. Comparison of three imaging techniques in diagnosis of chondrocalcinosis of the knees in calcium pyrophosphate deposition disease. Rheumatology (Oxford) 2013; 52 (06) 1090-1094
  • 72 Ellabban AS, Kamel SR, Omar HASA, El-Sherif AMH, Abdel-Magied RA. Ultrasonographic diagnosis of articular chondrocalcinosis. Rheumatol Int 2012; 32 (12) 3863-3868
  • 73 Zufferey P, Valcov R, Fabreguet I, Dumusc A, Omoumi P, So A. A prospective evaluation of ultrasound as a diagnostic tool in acute microcrystalline arthritis. Arthritis Res Ther 2015; 17 (01) 188
  • 74 Abreu M, Johnson K, Chung CB. , et al. Calcification in calcium pyrophosphate dihydrate (CPPD) crystalline deposits in the knee: anatomic, radiographic, MR imaging, and histologic study in cadavers. Skeletal Radiol 2004; 33 (07) 392-398
  • 75 Beltran J, Marty-Delfaut E, Bencardino J. , et al. Chondrocalcinosis of the hyaline cartilage of the knee: MRI manifestations. Skeletal Radiol 1998; 27 (07) 369-374
  • 76 Kaushik S, Erickson JK, Palmer WE, Winalski CS, Kilpatrick SJ, Weissman BN. Effect of chondrocalcinosis on the MR imaging of knee menisci. AJR Am J Roentgenol 2001; 177 (04) 905-909
  • 77 Hayes CW, Conway WF. Calcium hydroxyapatite deposition disease. Radiographics 1990; 10 (06) 1031-1048
  • 78 Molloy ES, McCarthy GM. Calcium crystal deposition diseases: update on pathogenesis and manifestations. Rheum Dis Clin North Am 2006; 32 (02) 383-400 , vii
  • 79 Flemming DJ, Murphey MD, Shekitka KM, Temple HT, Jelinek JJ, Kransdorf MJ. Osseous involvement in calcific tendinitis: a retrospective review of 50 cases. AJR Am J Roentgenol 2003; 181 (04) 965-972
  • 80 Sankaye P, Ostlere S. Arthritis at the shoulder joint. Semin Musculoskelet Radiol 2015; 19 (03) 307-318
  • 81 Ring D, Vaccaro AR, Scuderi G, Pathria MN, Garfin SR. ; Clinical Presentation and Pathological Characterization. Acute calcific retropharyngeal tendinitis. Clinical presentation and pathological characterization. J Bone Joint Surg Am 1994; 76 (11) 1636-1642
  • 82 Eastwood JD, Hudgins PA, Malone D. Retropharyngeal effusion in acute calcific prevertebral tendinitis: diagnosis with CT and MR imaging. AJNR Am J Neuroradiol 1998; 19 (09) 1789-1792