Thromb Haemost 1995; 74(01): 274-277
DOI: 10.1055/s-0038-1642689
Symposium
Gene Therapy of Haemophilia A and B
Schattauer GmbH Stuttgart

Biosynthesis of Factor IX: Implications for Gene Therapy

Barbara C Furie
Center for Hemostasis and Thrombosis, Division of Hematology-Oncology, New England Medical Center and the Departments of Medicine and Biochemistry, Tufts University School of Medicine, Boston, USA
,
Bruce Furie
Center for Hemostasis and Thrombosis, Division of Hematology-Oncology, New England Medical Center and the Departments of Medicine and Biochemistry, Tufts University School of Medicine, Boston, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
26 July 2018 (online)

 
  • References

  • 1 Furie B, and Furie BC. The Molecular Basis of Blood Coagulation. Cell 1988; 53: 505-518
  • 2 Furie B, Furie BC. Molecular Basis of Blood Coagulation. In: Hematology: Basic Principles and Practice. Hoffman R, Benz EJ, Shattil SJ, Furie B, Cohen HJ, Silberstein LE. eds. Churchill Livingstone.; new york, ny: 1995: 1566-1587
  • 3 McMullen BA, Fujikawa K, Kisiel W. The occurrence of 6-hydroxyaspartic acid in the vitamin K-dependent blood coagulation zymogens. Biochem Biophys Res Commun 1983; 115: 8-14
  • 4 Drakenberg T, Femlund P, Roepstorff P, Stenflo J. B-Hydroxyaspartic acid in vitamin K-dependent protein C. Proc Natl Acad Sci USA 1983; 80: 1802-1806
  • 5 Stenflo J, Lundwall N, Dahlback B. B-Hydroxyasparagine in domains homologous to the epidermal growth factorprecursor in vitamin K-dependent protein S. Proc Natl Acad Sci USA 1987; 84: 368-372
  • 6 Stenflo J, Onlin AK, Owen WG, Schneider WJ. B-Hydroxyaspartic acid or B-hydroxyasparagine in bovine low density lipoprotein receptor and in bovine thrombomodulin. J Biol Chem 1988; 263: 21-24
  • 7 Przysiecki CT, Staggers JE, Ramjit HG, Musson DG, Stem AM, Bennett CD, Friedman PA. Occurrence of B-hydroxylated asparagine residues in non-vitamin K-dependent proteins containing epidermal growth factor-like domains. Proc Natl Acad Sci USA 1987; 84: 7856-7860
  • 8 Gronke RS, VanDusen WJ, Garsky VM, Jacobs JW, Sardana MK, Stem AM, Friedman Pa. Aspartyl B-hydroxylase: in vitro hydroxylation of a synthetic peptide based on the structure of the first growth factor-like domain of human factor IX. Proc Natl Acad Sci USA 1989; 86: 3609-3613
  • 9 Stenflo J, Holme E, Lindstedt S, Chandramouli N, Huang LH, Tam JP, Merrifield RB. Hydroxylation of aspartic acid in domains homologous to the epidermal growth factor precursor is catalyzed by a 2-oxoglutarate-dependent dioxygenase. Proc Natl Acad Sci USA 1989; 86: 4440-4447
  • 10 Amphlett CW, Byrne R, Castellino FJ. The binding of metal ions to bovine factor DC. J Biol Chem 1978; 259: 6774-6779
  • 11 Morita T, Isaacs BS, Esmon CT, Johnson AE. Derivatives of blood coagulation factor IX contain a high affinity Ca2+ binding site that lacks y-carboxyglutamic acid. J Biol Chem 1984; 259: 5698-5704
  • 12 Rees DJG, Jones IM, Handford PA, Walter SJ, Esnouf MP, Smith KJ, Brownlee GG. The role of ²-hydroxyasparatate and adjacent carboxylate residues in the first EFG domain of human factor IX. EMBO J 1988; 7: 2053-2061
  • 13 Femlund P, Stenflo J. ²-Hydroxyaspartic acid in vitamin K-dependent proteins. J Biol Chem 1983; 258: 12509-12512
  • 14 RabietM J, Jorgensen MJ, Furie B, Furie BC. Effect of propeptide mutations on processing of factor IX. J Biol Chem 1987; 262: 14895-14898
  • 15 Derian CK, VanDusen W, Przysiecki CT, Walsh PN, Berkner KL, Kaufman RJ, Friedman PA. Inhibitors of 2-ketoglutarate-dependent dioxygenases block aspartyl B-hydroxylation of recombinant human factor DC in several mammalian expression systems. J Biol Chem 1989; 264: 6615-6618
  • 16 Fujikawa K, Legaz ME, Kato H, Davie EW. The mechanism of activation of bovine factor DC (Christmas factor) by bovine factor XIa (activated plasma thromboplastin antecedent). Biochemistry 1974; 13: 4508-4515
  • 17 Katayama K, Ericsson LH, Enfield DL, Walsh KA, Neurath H, Davie EW, Titani K. Comparison of amino acid sequence of bovine coagulation factor IX (Christmas Factor) with that of other vitamin K-dependent plasma proteins. Proc Natl Acad Sci USA 1979; 75: 4990-4994
  • 18 Mizuochi T, Taniguchi T, Fujikawa K, Titani K, Kobata A. The structure of the carbohydrate moieties of bovine blood coagulation factor DC (Christmas factor). J Biol Chem 1983; 258: 6020-6024
  • 19 Nishimura G, Kawabata S, Kisiel W, Hase S, Ikenaka T, Takao T, Shimonishi Y, Iwanga S. Identification of a disaccharide (Xyl-Glc) and a trisaccharide (Xyl2-Glc) O-glycosidically linked to a serine residue in the first epidermal growth factor-like domain of human factor VII and DC and protein Z and bovine protein Z. J Biol Chem 1989; 264: 20320-20325
  • 20 Nishimura H, Takao T, Hase S, Shimonishi Y, Iwanga S. Human Factor IX has a tetrasaccharide O-glycosidically linked to serine 61 through the fucose residue. J Biol Chem 1992; 267: 17520-17525
  • 21 Hase S, Nishimura H, Kawabata S, Iwanga S, Ikanaka T. The structure of (xylose)2 glucose-O-serine 53 found in the first epidermal growth factorlike domain of bovine clotting factor DC. J Biol Chem 1990; 265: 1858-1861
  • 22 Harris RJ, van Halbeek H, Glushka J, Basa LJ, Ling VT, Smith KJ, Spellman MW. Identification and structural analysis of the tetrasaccharide Neu Aca(2³6)GalB(l³4)GlcN AcB( l³3)Fuca l³O-linked to serine 61 ofhuman factor DC. Biochemistry 1993; 32: 6539-6547
  • 23 Bucher D, Nebelin E, Thomsen J, Stenflo J. Identification of ³-carboxyglutamic acid residues in bovine factors IX and X and in a new vitamin K-dependent protein. FEBS Lett 1976; 68: 293-296
  • 24 Fryklund I, Borg H, Andersson L-O. Amino terminal sequence of human factor IX: presence of g-carboxyglutamic acid residues. FEBS Lett 1976; 65: 187-189
  • 25 Morita T, Isaacs BS, Esmon CT, Johnson AE. Derivatives of blood coagulation factor IX contain a high affinity Ca2+ binding site that lacks y- carboxyglutamic acid. J Biol Chem 1984; 259: 5698-5704
  • 26 Jones ME, Griffith MJ, Monroe DM, Roberts HR, Lentz BR. Comparison of lipid binding and kinetic properties of normal, variant, and ³-carboxyglutamic acid modified human factor DC and factor IXa. Biochemistry 1985; 24: 8064-8069
  • 27 Liebman HA, Furie BC, Furie B. The factor IX phospholipid-binding site is required for calcium dependent activation of factor DC by factor XIa. J Biol Chem 1987; 262: 7605-7612
  • 28 Park CJ, Tulinsky A. Three-dimensional structure of the kringle sequence structure of prothrombin fragment. I.Biochemistry 1986; 25: 3977-3982
  • 29 Soriano-Garcia M, Padmanabhan K, de Vos AM, Tulinsky A. The Ca2+ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Biochemistry 1992; 31: 2554-2566
  • 30 Jacobs M, Freedman SJ, Furie BC, Furie B. Membrane binding properties of the factor IX -carboxyglutamic acid rich domain prepared by chemical synthesis. J Biol Chem 1994; 269: 25494-25501
  • 31 Freedman SJ, Furie BC, Furie B, Baleja JC. Structure of the metal-free ³-carboxyglutamic acid-rich membrane binding region of factor IX by 2D NMR spectroscopy. J Biol Chem in press.
  • 32 Freedman SJ, Jacobs M, Furie BC, Baleja JD, Furie B. Membrane binding properties and 2D NMR-derived structure of the ³-carboxyglutamic acid- rich domain of human factor IX. Blood 1994; 84: 531a
  • 33 Freedman SJ, Furie BC, Furie B, Baleja JD. unpublished results
  • 34 Pan LC, Price PA. The propeptide of rat bone y-carboxyglutamic acid protein shares homology with othervitamin K-dependent protein precursors. Proc Natl Acad Sci USA 1985; 82: 6109-6113
  • 35 Price PA, Fraser JD, Metz-Virca G. Molecular cloning of matrix Gla protein: implications for substrate recognition by the vitamin K-dependent y-carboxylase. Proc Natl Acad Sci USA 1987; 84: 8335-8339
  • 36 Diuguid G, Rabiet M-J, Furie BC, Liebman HA, Furie B. Molecular basis of hemophilia B: a defective enzyme due to an unprocessed propeptide is caused by a point mutation in the factor IX precursor. Proc Natl Acad Sci USA 1986; 83: 5803-5807
  • 37 Jorgensen MJ, Cantor AB, Furie BC, Shoemaker C, Furie B. Recognition site directing vitamin K-dependent y-carboxylation resides on the propeptide of Factor IX. Cell 1987; 48: 185-191
  • 38 Foster DC, Rudinski MS, Schach BG, Berkner KL, Kumar AA, Hagen FS, Sprecher A, Insley MY, Davie EW. Propeptide of human protein C is necessary for y-carboxylation. Biochemistry 1987; 26: 7003-7011
  • 39 Ratcliffe JV, Jorgensen MJ, DiMichelle D, Furie B, Furie BC. Sufficiency of the³-carboxylation recognition site on the propeptides of the vitamin K- dependent-proteins for carboxylation. Blood 1991; 78: 180A
  • 40 Sanford DG, Kanagy C, Sudmeir JL, Furie BC, Furie B, Bachovchin WW. Structure of the propeptide of prothrombin containing the y-carboxylation recognition site determined by two-dimensional NMR spectroscopy. Biochemistry 1991; 30: 9835-9841
  • 41 Suttie JW. Mechanism of action of vitamin K: synthesis of ³-carboxyglutamic acid. CRC Crit Rev Biochem 1980; 8: 191-223
  • 42 Wood GM, Suttie JW. Vitamin K-dependent carboxylase: Stoichiometry of vitamin K epoxide fonmation, ³-carboxy glutamyl formation, and ³-glutamyl- 3H cleavage. J Biol Chem 1988; 263: 3234-3239
  • 43 Ulrich M MW, Furie B, Jacobs M, Vermeer C, Furie BC. Vitamin K- dependent carboxylation: a synthetic peptide based upon the ³-carboxylation recognition site sequence of the prothrombin propeptide is an active substrate forthe carboxylase of in vitro. J Biol Chem 1988; 263: 9697-9702
  • 44 Knobloch JE, Suttie JW. Vitamin K-dependent carboxylase: control of enzyme activity by the “propeptide” region of factor X. J Biol Chem 1987; 262: 15334-15337
  • 45 Hubbard BR, Ulrich MM W, Jacobs M, Vermeer C, Walsh C, Furie B, Furie BC. Vitamin K-dependent carboxylase: Affinity purification from bovine liver by using a synthetic propeptide containing the ³-carboxylation recognition site. Proc Natl Acad Sci USA 1989; 86: 6893-6897
  • 46 Wu S-M, Morris DP, Stafford DW. Identification and purification to near homogeneity of the vitamin K-dependent carboxylase. Proc Natl Acad Sci USA 1991; 88: 2236-2240
  • 47 Wu S-M, Cheung W-F, Frazier DF, Stafford DW. Cloning and expression of the cDNA for human gamma-glutamyl carboxylase. Science 1991; 254: 1634-1636
  • 48 Rehemtulla A, Roth DA, Wasley LC, Kuliopulos A, Walsh CT, Furie B, Furie BC, Kaufman RJ. In vitro and in vivo functional characterization of bovine vitamin K-dependent y-carboxylase expressed in Chinese hamster ovary cells. Proc Natl Acad Sci USA 1993; 90: 4611-4615
  • 49 Roth DA, Rehemtulla A, Kaufman RJ, Walsh CT, Furie B, Furie BC. Expression of vitamin K-dependent carboxylase in baculovirus-infected insect cells. Proc Natl Acad Sci USA 1993; 90: 8372-8376
  • 50 Kuliopulos A, Cieurzo CE, Furie B, Furie BC, Walsh CT. N-Bromoacetyl- peptide substrate affinity labeling of vitamin K-dependent carboxylase. Biochemistry 1992; 31: 9436-9444
  • 51 Kuliopulos A, Nelson NP, Yamada M, Walsh CT, Furie B, Furie BC, Roth DA. Localization of the affinity peptide-substrate inactivator site on recombinant vitamin K-dependent carboxylase. J Biol Chem 1994; 33: 21364-21370
  • 52 Yamada M, Kuliopulos A, Nelson NP, Roth DA, Furie B, Furie BC, Walsh CT. Localization of the factor IX propeptide binding site on recombinant vitamin K-dependent carboxylase using benzoylphenylalanine photoaffinity peptide inactivators. Biochemistry 1995; 34: 481-489
  • 53 Roth DA, Whirl ML, Valazquez-Estades LJ, Walsh CT, Furie B, Furie BC. Mutagenesis of vitamin K-dependent carboxylase demonstrates a carboxyl terminus-mediated interaction with vitamin K hydroquinone. J Biol Chem 1995; 11: 5305-5311
  • 54 Wasley EC, Rehemtulla A, Bristol JA, Kaufman RJ. Pace/furin can process the vitamin K-dependent profactor IX precursor within the secretory pathway. J Biol Chem 1993; 268: 8458-8465
  • 55 Bristol JA, Furie BC, Furie B. Propeptide processing during factor IX biosynthesis. J. Biol Chem 1993; 268: 7577-7584
  • 56 Meulien P, Balland A, Lepage P, Mischler F, Dott K, Hauss C, Grandgeorge M, Lecocq U- P. Increased biological activity of a recombinant factor IX variant carrying alanine at position +1. Protein Eng 1990; 3: 629-633
  • 57 Bristol JA, Freedman SJ, Furie BC, Furie B. Profactor IX: The propeptide inhibits binding to membrane surfaces and activation by factor XIa. Biochemistry 1994; 33: 14136-14143
  • 58 Carlisle TL, Suttie JW. Vitamin K dependent carboxylase: subcellular location of the carboxylase and enzymes involved in vitamin K metablism. Biochemistry 1980; 19: 1161-1167
  • 59 Stanton C, Taylor R, Wallin R. Processing of prothombin in the secretory pathway. Biochem J. 1991 277. 59-65
  • 60 Bristol JA, Furie B, Furie BC. unpublished results