Thromboembolism has been frequently reported in cancer patients, mainly in cases with solid tumors. Besides in several animal models, fibrin deposition around the cancer and platelet aggregates appear to be involved in invasion and metastasis. This study was aimed at evaluating the extent of in vivo platelet activation and fibrin formation in several kinds of human cancer. We excluded from this study patients whose blood was sampled with difficulty as well as those having clinical evidence of thrombosis or embolism, those with thrombocytopenia, increased fibrinogen degradation products or biological pattern of disseminated intravascular coagulation. Fibrinopeptide A (fPA) and β-thromboglobulin (β-Tg) were measured by RIA. Prox platelet count ratio (PCR) was determined on whole blood samples as an index of circulating aggregates. Usual coagulation tests, antithrombin III activity, protein C plasma level, F VIII related antigen (F VIII:R:Ag), F VIIIB histocistogen cofactor (F VIII:C) and F VIII procoagulant activity (F VIII:C) were also determined.

It was found that in more than fifty percent of patients, fPA was significantly increased above the upper reference limit. Cases with increased β-Tg were less frequent. Separate groups of cases showing no signs of thrombogenic process. Increased level of fPA with normal plasma β-Tg level suggests that thrombin generation occurs only in the extravascular compartment, probably next to the tumoral tissue. Increased levels of plasma β-Tg with normal fPA levels may result from platelet activation by other stimuli than thrombin. It must be emphasized that normal PCR does not exclude the presence of fibrinolytic circulating aggregates which cannot be dispersed by EDTA. High F VIII activities may be due to the release of von Willebrand factor from tumoral vessels.

Characterization of platelet aggregating material extracted from human lung adenocarcinoma cell line which metastasized in nude mice. S.C. Emplmentation. J. Inufusa, N. Shigara, K. Nakano and K. Yamaumi, Department of 1st Surgery, Keio University School of Medicine, Shinagawa-ku, Tokyo, JAPAN.

It has been reported in animal experimental system that platelet aggregating material (PAM) of cancer cell play important role in cancer metastasis. Many human cancer cell lines has been also studied the platelet aggregation activity of PAM. But correlation between the platelet aggregation activity and metastatic potential of human cancer cells were usually unknown.

We established a human lung adenocarcinoma cell line KM-12-2 which produce spontaneous lung metastasis when cells implanted into subcutaneous of nude mice. PAM was extracted from KM-12-2 cells following the method of D. Mohanty and P. Hilgard. Platelet aggregation study of PAM was performed by human separated platelet rich plasma using XIN0 Hematran FACSD. Character of PAM were examined by physical and chemical treatment. KM-12-2 PAM show 80% of platelet aggregation in maximum after 150 sec lag time, and aggregation was not found by citrated PRP.

Characterization of platelet aggregating material extracted from human lung adenocarcinoma cell line which metastasized in nude mice. S.C. Emplmentation. J. Inufusa, N. Shigara, K. Nakano and K. Yamaumi, Department of 1st Surgery, Keio University School of Medicine, Shinagawa-ku, Tokyo, JAPAN.

It has been reported in animal experimental system that platelet aggregating material (PAM) of cancer cell play important role in cancer metastasis. Many human cancer cell lines has been also studied the platelet aggregation activity of PAM. But correlation between the platelet aggregation activity and metastatic potential of human cancer cells were usually unknown.

We established a human lung adenocarcinoma cell line KM-12-2 which produce spontaneous lung metastasis when cells implanted into subcutaneous of nude mice. PAM was extracted from KM-12-2 cells following the method of D. Mohanty and P. Hilgard. Platelet aggregation study of PAM was performed by human separated platelet rich plasma using XIN0 Hematran FACSD. Character of PAM were examined by physical and chemical treatment. KM-12-2 PAM show 80% of platelet aggregation in maximum after 150 sec lag time, and aggregation was not found by citrated PRP.

Characterization of platelet aggregating material extracted from human lung adenocarcinoma cell line which metastasized in nude mice. S.C. Emplmentation. J. Inufusa, N. Shigara, K. Nakano and K. Yamaumi, Department of 1st Surgery, Keio University School of Medicine, Shinagawa-ku, Tokyo, JAPAN.

It has been reported in animal experimental system that platelet aggregating material (PAM) of cancer cell play important role in cancer metastasis. Many human cancer cell lines has been also studied the platelet aggregation activity of PAM. But correlation between the platelet aggregation activity and metastatic potential of human cancer cells were usually unknown.

We established a human lung adenocarcinoma cell line KM-12-2 which produce spontaneous lung metastasis when cells implanted into subcutaneous of nude mice. PAM was extracted from KM-12-2 cells following the method of D. Mohanty and P. Hilgard. Platelet aggregation study of PAM was performed by human separated platelet rich plasma using XIN0 Hematran FACSD. Character of PAM were examined by physical and chemical treatment. KM-12-2 PAM show 80% of platelet aggregation in maximum after 150 sec lag time, and aggregation was not found by citrated PRP.

Characterization of platelet aggregating material extracted from human lung adenocarcinoma cell line which metastasized in nude mice. S.C. Emplmentation. J. Inufusa, N. Shigara, K. Nakano and K. Yamaumi, Department of 1st Surgery, Keio University School of Medicine, Shinagawa-ku, Tokyo, JAPAN.

It has been reported in animal experimental system that platelet aggregating material (PAM) of cancer cell play important role in cancer metastasis. Many human cancer cell lines has been also studied the platelet aggregation activity of PAM. But correlation between the platelet aggregation activity and metastatic potential of human cancer cells were usually unknown.

We established a human lung adenocarcinoma cell line KM-12-2 which produce spontaneous lung metastasis when cells implanted into subcutaneous of nude mice. PAM was extracted from KM-12-2 cells following the method of D. Mohanty and P. Hilgard. Platelet aggregation study of PAM was performed by human separated platelet rich plasma using XIN0 Hematran FACSD. Character of PAM were examined by physical and chemical treatment. KM-12-2 PAM show 80% of platelet aggregation in maximum after 150 sec lag time, and aggregation was not found by citrated PRP.

Characterization of platelet aggregating material extracted from human lung adenocarcinoma cell line which metastasized in nude mice. S.C. Emplmentation. J. Inufusa, N. Shigara, K. Nakano and K. Yamaumi, Department of 1st Surgery, Keio University School of Medicine, Shinagawa-ku, Tokyo, JAPAN.

It has been reported in animal experimental system that platelet aggregating material (PAM) of cancer cell play important role in cancer metastasis. Many human cancer cell lines has been also studied the platelet aggregation activity of PAM. But correlation between the platelet aggregation activity and metastatic potential of human cancer cells were usually unknown.

We established a human lung adenocarcinoma cell line KM-12-2 which produce spontaneous lung metastasis when cells implanted into subcutaneous of nude mice. PAM was extracted from KM-12-2 cells following the method of D. Mohanty and P. Hilgard. Platelet aggregation study of PAM was performed by human separated platelet rich plasma using XIN0 Hematran FACSD. Character of PAM were examined by physical and chemical treatment. KM-12-2 PAM show 80% of platelet aggregation in maximum after 150 sec lag time, and aggregation was not found by citrated PRP.

Characterization of platelet aggregating material extracted from human lung adenocarcinoma cell line which metastasized in nude mice. S.C. Emplmentation. J. Inufusa, N. Shigara, K. Nakano and K. Yamaumi, Department of 1st Surgery, Keio University School of Medicine, Shinagawa-ku, Tokyo, JAPAN.

It has been reported in animal experimental system that platelet aggregating material (PAM) of cancer cell play important role in cancer metastasis. Many human cancer cell lines has been also studied the platelet aggregation activity of PAM. But correlation between the platelet aggregation activity and metastatic potential of human cancer cells were usually unknown.

We established a human lung adenocarcinoma cell line KM-12-2 which produce spontaneous lung metastasis when cells implanted into subcutaneous of nude mice. PAM was extracted from KM-12-2 cells following the method of D. Mohanty and P. Hilgard. Platelet aggregation study of PAM was performed by human separated platelet rich plasma using XIN0 Hematran FACSD. Character of PAM were examined by physical and chemical treatment. KM-12-2 PAM show 80% of platelet aggregation in maximum after 150 sec lag time, and aggregation was not found by citrated PRP.

Characterization of platelet aggregating material extracted from human lung adenocarcinoma cell line which metastasized in nude mice. S.C. Emplmentation. J. Inufusa, N. Shigara, K. Nakano and K. Yamaumi, Department of 1st Surgery, Keio University School of Medicine, Shinagawa-ku, Tokyo, JAPAN.

It has been reported in animal experimental system that platelet aggregating material (PAM) of cancer cell play important role in cancer metastasis. Many human cancer cell lines has been also studied the platelet aggregation activity of PAM. But correlation between the platelet aggregation activity and metastatic potential of human cancer cells were usually unknown.

We established a human lung adenocarcinoma cell line KM-12-2 which produce spontaneous lung metastasis when cells implanted into subcutaneous of nude mice. PAM was extracted from KM-12-2 cells following the method of D. Mohanty and P. Hilgard. Platelet aggregation study of PAM was performed by human separated platelet rich plasma using XIN0 Hematran FACSD. Character of PAM were examined by physical and chemical treatment. KM-12-2 PAM show 80% of platelet aggregation in maximum after 150 sec lag time, and aggregation was not found by citrated PRP.