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Summary

Ethanol, at physiologically tolerable concentrations, did not
affect the primary phase of ADP-induced aggregation of human
or rabbit platelets, which is not associated with the secretion of
granule contents. Potentiation by epinephrine of the primary
phase of ADP-induced aggregation of rabbit platelets was also not
inhibited by ethanol. However, ethanol did inhibit the secondary
phase of ADP-induced aggregation which occurs with human
platelets in citrated platelet-rich plasma and is dependent on the
formation of thromboxane A,. Inhibition by ethanol of thrombox-
ane production by stimulated platelets is likely due to inhibition of
the mobilization of arachidonic acid from membrane phos-
pholipids, as ethanol had little or no effect on aggregation and
secretion induced by arachidonic acid or the thromboxane mimet-
ic U46619. Rabbit platelet aggregation and secretion in response
to low concentrations of collagen, thrombin, or PAF were
inhibited by ethanol. Inhibition of the effects of thrombin and
PAF was also observed with aspirin-treated platelets. Thus, in
addition to inhibiting the mobilization of arachidonate for throm-
boxane formation that occurs with most agonists, ethanol can also
inhibit aggregation and secretion through other effects on platelet
responses. ‘

Introduction

There is evidence from epidemiological studies indicating that
moderate consumption of alcoholic beverages is inversely related
to the incidence of the clinical complications of coronary heart
disease (1-5). Several reasons have been proposed for this
protective effect of alcohol, including personality characteristics
of drinkers and non-drinkers, increased plasma levels of high
density lipoproteins or prostacyclin that are associated with
ingestion of alcohol, and direct inhibitory effects of alcohol on
platelet function (6, 7). Ethanol has been shown to inhibit
aggregation and thromboxane production by platelets (8—14), and
platelets are known to be involved in both the initiation of
atherosclerotic lesions and in the thromboembolic complications
of coronary heart disease (15). However, the mechanism (or
mechanisms) by which ethanol inhibits platelet responses is not
known. Ethanol inhibits production of arachidonate metabolites
by platelets stimulated with collagen or thrombin (12-14), and it
has been suggested that ethanol inhibits Ca®*-activated phos-
pholipase A, in platelets (16). In addition, membrane fluidity of
cells is increased by ethanol (17), and since increased platelet
membrane fluidity has been reported to inhibit some platelet
responses (18, 19), it may be that an alteration in membrane
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fluidity by ethanol is involved in its inhibitory effects on platelet
function.

Most aggregating agents also induce secretion of granule
contents of platelets and activate the arachidonate pathway,
leading to thromboxane production (20, 21). To determine the
effect of ethanol on various pathways of platelet responses, we
have examined the action of ethanol at physiologically tolerable
concentrations on aggregation and secretion of granule contents
by platelets in response to a variety of agonists, to several of
which platelets can be exposed in vivo. Platelets in citrated
platelet-rich plasma were used to study the effect of ethanol on
ADP-induced primary aggregation (rabbit platelets) and primary
and secondary aggregation (human platelets). Washed platelets
were used in the remaining experiments so that platelet responses
could be studied in media containing concentrations of Ca?* in the
physiological range. Rabbit platelets were used in the majority of
these experiments, as we wished to establish the effects of ethanol
on platelets from animals that we are using for other studies of the
effects of ethanol on thrombosis and atherosclerosis (22).

Materials and Methods

Materials

Materials were obtained from the following suppliers: ADP, epineph- -

rine, arachidonic acid, and acetylsalicylic acid (aspirin), from Sigma
Chemical Co., St. Louis, MO; synthetic 1-0-alkyl-2-acetyl-sn-glyceryl-3-
phosphoryl choline (PAF, platelet activating factor) from Calbiochem, La
Jolla, CA. Solutions of arachidonic acid were prepared as previously
described (23). Imipramine was from Geigy Canada, Dorval, Que.;
bovine thrombin (topical) from Parke-Davis Inc., Scarborough, Ont.;
human fibrinogen, grade L, from AB Kabi, Stockholm (treated before use
with diisopropylfluorophosphate, Sigma) (24) and partially purified by the
method of Lawrie et al. (25); bovine albumin (fraction V) from
Bochringer Mannheim, Dorval, Que.; absolute ethanol from Consoli-
dated Alcohols; Toronto; the thromboxane mimetic U46619 from the
Upjohn Co., Kalamazoo, MI. Apyrase was prepared from potatoes (26,
27), dissolved in 0.15 M NaCl and stored at —20° C; acid soluble collagen
was prepared from bovine tendon collagen (Sigma) (28). 5-Hydroxy-3’-
“C-tryptamine creatinine sulfate (**C-serotonin, 60 mCi/mmol) was from
Amersham Corp., Oakville, Ont.; Na, *'CrQ, (200-500 Ci/g of Cr) and a
radioimmunoassay kit (NEK-007) for thromboxane B, (TxB,) was from
NEN Canada, Lachine, Que. Unless indicated otherwise, reagents were
dissolved and diluted in modified Tyrode solution (no added calcium salt).
All concentrations are expressed as final concentrations after all addi-
tions.

Methods

Suspensions of washed platelets from humans and rabbits were
prepared as described elsewhere (26, 29, 30). In the first washing fluid, the
platelets were labelled with “C-serotonin (2 pCi per 10 ml of washing
fluid), and for some experiments with *'Cr (0.5 pCi/2 X 10° platelets). For

~ the preparation of aspirin-treated platelets, aspirin (500 pM) was included

in the first washing fluid. Platelet suspensions (0.5 x 10°ml in Tyrode
solution containing 0.35% albumin, 5 pM imipramine and apyrase,
pH 7.35) were incubated for at least 20 min at 37° C before testing.
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Fig.1 Effects of ethanol on ADP-induced responses of human platelets
in citrated platelet-rich plasma (PRP). The PRP was stirred with or
without ethanol for 2 min prior to addition of ADP (5 uM), indicated by
the arrow. The extent of secretion of C-serotonin from prelabelled
platelets and TxB, formation were determined 5 min after addition of
ADP and representative values are given (3 experiments) -
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Fig. 2 Effects of ethanol on collagen-induced responses of suspensions of
washed platelets from rabbits. Platelets .were stirred with or without
ethanol for 2 min prior to addition of collagen (0.4 pg/ml), indicated by
the arrow. The extent of secretion of *C-serotonin from the prelabelled
platelets was determined in samples taken 3 min after addition of
collagen. Aggregation curves are representative and mean values for
secretion are shown for 4 experiments

Human or rabbit platelet-rich plasma was prepared from blood taken
into sodium citrate (1 part 3.8% to 9 parts of blood) and centrifuged at
2,000 x g for 2 min at 37° C for human platelets and at room temperature
for rabbit platelets. During the previous 14 days, the human donors had
not ingested drugs that affect platelet function. The platelet count was
adjusted with platelet-poor plasma to 0.3 X 10°/ml (human platelets) and
0.5 x 10%ml (rabbit platelets) and the platelet-rich plasma was kept at
37° C. Platelets were labelled by incubation of platelet-rich plasma with
!4C-serotonin for at least 10 min.

Platelet aggregation was studied at 37° C in an aggregation module
(Payton Associates, Scarborough, Ont.). Fibrinogen (0.3 mg/ml) was
added to the suspensions of washed human platelets. Ethanol or diluent
(Tyrode solution with no added calcium or magnesium salts) was added:
2 min before the aggregating agent. Three or five min after addition of
agonist, supernatant samples were prepared by centrifugation of platelet-
rich plasma or suspension for 1 min at 12,000 X g in an Eppendorf
centrifuge (Brinkmann, Rexdale, Ont.). These samples were used to
measure loss of *'Cr and secretion of “C-serotonin (31, 32) and for
radioimmunoassays of TxB,. Values for extent of secretion are given as
means + S.E.M., and paired t-tests were used to test for significance of
differences.
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Results

Addition of ethanol (1-9 mg/ml) to stirred suspensions of
human or rabbit platelets did not cause a change in either the
oscillations of light transmission or light transmission itself,
indicating that ethanol did not induce platelet shape change. No
significant lysis of platelets (<1% loss of >!Cr) was observed with
concentrations of ethanol up to 13 mg/ml.

Unless otherwise stated, the effect of ethanol on platelet
responses to agonists was tested at 1, 2, and 4 mg/ml. When an
effect was observed, it was consistent and most marked at 4 mg/
ml. At 2 mg/ml, effects were marginal, and at 1 mg/ml, rarely
different from control.

ADP

In accord with our earlier observations (29, 33), ADP induced
only the primary phase of aggregation of rabbit platelets in
citrated platelet-rich plasma or of rabbit or human platelets in
suspensions of washed platelets in Tyrode-albumin solution
containing 2 mM Ca?*. Secretion of *C-serotonin was less than
1%, even with high concentrations of ADP. Ethanol (1-9 mg/ml)
had no effect on shape change or primary aggregation of washed
human or rabbit platelets, or of rabbit platelets in citrated
platelet-rich plasma stimulated with ADP (0.25-10 pM). Human
platelets in citrated platelet-rich plasma underwent both primary
and secondary aggregation in response to ADP at concentrations
above 2-3 pM; the secondary phase of aggregation was accom-
panied by secretion of granule contents and production of TxB,.
Ethanol (1-4 mg/ml) inhibited the secondary phase of aggrega-
tion, and also inhibited secretion of *C-serotonin from prelabel-
led platelets and production of TxB, (Fig.1). The extent of
inhibition was directly related to the concentration of ethanol.

Experiments were done to examine the effect of ethanol on the
synergistic effect of epinephrine on ADP-induced aggregation of
rabbit platelets. By itself, epinephrine (0.5-50 pM) in the absence
or presence of ethanol, caused no discernible change in the
oscillations or extent of light transmission through stirred suspen-
sions of rabbit platelets. The small aggregation response induced
by ADP (0.1-0.5 pM) was potentiated by epinephrine, but
ethanol (1-4 mg/ml) did not affect this potentiation. Secretion of
dense granule contents was not detectable.

Collagen

Ethanol (4 mg/ml) inhibited aggregation of suspensions of
washed rabbit platelets in response to low concentrations of
collagen (0.4 pg/ml) (Fig.2). The extent of secretion of “C-
serotonin induced by 0.4 pg collagen/ml was significantly inhi-
bited by 4 mg ethanol/ml (Fig.2, p <0.005). At higher concen-
trations of collagen (1.25 pg/ml) when maximum aggregation was
achieved, ethanol had little or no effect on platelet aggregation
and secretion.

Thrombin

Ethanol (2 and 4 mg/ml) inhibited aggregation of suspensions
of washed platelets from rabbits in response to low concentrations
of thrombin (<0.010 U/ml) (Fig.3). The extent of secretion of
4C-serotonin in response to thrombin (0.008 U/ml) was signifi-
cantly inhibited in the presence of ethanol (Fig. 3, p <0.001). At
higher concentrations of thrombin when maximum aggregation
was achieved, ethanol had little or no effect on platelet aggrega-
tion and secretion. An inhibitory effect of ethanol on thrombin-
induced aggregation and secretion of granule contents was also
evident when the platelets had been pre-treated with aspirin at a
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Fig.3 Effects of ethanol on responses of suspensions of washed platelets
from rabbits to thrombin (0.008 U/ml). Aggregation curves are represen-
tative and mean values for secretion are shown for 5 experiments. (See
legend of Fig. 2 for details)
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Fig.4 Effects of ethanol on PAF-induced responses of suspensions of
washed platelets from rabbits. Aggregation curves are representative and
mean values for secretion are shown for 7 experiments. (See legend of
Fig. 2 for details)

concentration that blocks thromboxane formation (33). The
extent of secretion of '*C-serotonin by aspirin-treated platelets
stimulated with thrombin (0.008 U/ml) was inhibited by ethanol
(0.2 £ 0.2% compared with 19.3 + 2.2% in the absence of
ethanol, n = 6, p <0.001).

PAF

Ethanol (4 mg/ml) inhibited aggregation by suspensions of
washed rabbit platelets in response to a low concentration of PAF
(0.5 nM) (Fig.4a). The extent of secretion of *C-serotonin
induced by PAF was significantly inhibited by ethanol (Fig. 4a,
p <0.01). Secretion of granule contents induced by a higher
concentration of PAF (1 nM) was also inhibited by ethanol
(p <0.001), however, ethanol had no major effect on the extent
of aggregation induced by PAF at this concentration although
deaggregation occurred more readily in the presence of ethanol
(Fig. 4b). At concentrations of PAF greater than 1 nM, ethanol
had little or no effect on platelet aggregation and secretion. An
inhibitory effect of ethanol on PAF-induced aggregation was also
evident when the platelets had been pretreated with aspirin at a
concentration that blocks thromboxane formation (33). The
extent of secretion of *C-serotonin by aspirin-treated platelets
stimulated with PAF (1 nM) was significantly inhibited by ethanol

(5.3 £ 2.5% compared with 16.3 £ 3.1% in the absence of

ethanol, n = 5, p <0.05).

Arachidonic Acid and U46619

Ethanol (1-4 mg/ml) had no detectable effect on aggregation
and secretion induced by a range of concentrations of arachidonic
acid (15-250 pM) or the thromboxane mimetic U46619
(0.35-5 uM) in 4 experiments with suspensions of washed
platelets from rabbits.

Discussion

We have found that ethanol (4 mg/ml) inhibits aggregation of

platelets in response to some, but not all agonists and that the
inhibition of platelet aggregation is associated with inhibition of
secretion of granule contents, thus extending findings by others
who have reported inhibition of platelet aggregation by ethanol
(8-11).

Platelet aggregation can be caused by a wide variety of
agonists, most of which also cause the secretion of granule
contents and the formation of TxA,. Secreted ADP, and the TxA,
that is generated amplify the platelet responses. The effects of
ethanol on the various reactions that cause and/or amplify
aggregation and secretion have not previously been considered in
detail, and so in the present studies, investigations have been
done to determine the effects of ethanol on the response to ADP,
the mobilization of arachidonic acid, the response to TxA,, and
the response to thrombin or PAF when TxA, formation has been
inhibited.

Human and rabbit platelets suspended in media containing
albumin, fibrinogen, and physiological concentrations of Ca®*,
and rabbit platelets in citrated platelet-rich plasma, aggregate in
response to stimulation with ADP, but do not undergo secretion
of their amine storage granule contents to an appreciable extent,
even with high concentrations of ADP (20, 29, 33, 34). In the
present experiments, we have established that ethanol does not
inhibit primary ADP-induced aggregation of human and rabbit
platelets. Epinephrine, which interacts with a,-receptors on the
platelet surface, increases the sensitivity of rabbit platelets to
ADP, although epinephrine by itself does not aggregate rabbit
platelets, as shown by others (35). Ethanol had no effect on the
potentiation of ADP-induced aggregation of rabbit platelets by
epinephrine, indicating that it does not interfere with the interac-
tion of epinephrine with its receptor, or with subsequent events
involved in its potentiation of aggregation by another agonist.

When human platelets in citrated platelet-rich plasma (or in
artificial medium with a concentration of Ca®* in the micromolar
range) are stimulated with ADP at concentrations greater than
2-3 pM, they undergo not only primary aggregation, but also a
secondary aggregation response that is associated with activation
of the arachidonate pathway, resulting in thromboxane produc-
tion and secretion of granule contents (33). Ethanol inhibited this
second phase of aggregation, and inhibited the secretion of
granule contents and production of thromboxane. However, this
effect of ethanol must be on the mobilization of arachidonic acid
from membrane phospholipids rather than on the conversion of
arachidonic acid to TxA, because we and others (11) have found
that ethanol does not inhibit arachidonic acid-induced platelet
aggregation and ethanol had no discernible effect on platelet
aggregation and secretion in response to the thromboxane mi-
metic U46619. Thus, ethanol must inhibit, either directly and/or
indirectly, the (phospho)lipases responsible for arachidonic acid
mobilization (16).

Collagen-induced platelet aggregation is mediated largely
through TxA, that is formed and ADP that is secreted when
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platelets are stimulated with collagen (20, 36). Since ethanol does
not inhibit the ADP pathway of platelet aggregation, it is likely

that the inhibitory effect of ethanol on collagen-induced aggrega-

tion and secretion by rabbit platelets is due to inhibition of the
mobilization of arachidonic acid for the generation of TxA,.
Hwang and associates (13, 14) have shown that high concentra-
tions of ethanol inhibit thromboxane production by rat and
human platelets stimulated with collagen.

Since ethanol inhibited thrombin-induced responses of both
untreated and aspirin-treated rabbit platelets (which cannot form
thromboxane), ethanol must also inhibit the aspect of thrombin-
induced aggregation that occurs independently of TxA, and ADP.
We have recently found that the inhibitory effect of ethanol on
thrombin-induced platelet aggregation and secretion in the ab-
sence of thromboxane production is associated with an inhibition
of inositol trisphosphate (IPs;) formation (37); IP; is a second
messenger involved in Ca?*-mobilization in many cells including
platelets (38, 39) and it seems likely that inhibition of IP;
formation and hence Ca?*-mobilization may be responsible for
the inhibitory effect of ethanol on thrombin-induced aggregation.

PAF is another aggregating agent of platelets that exerts its
action in at least three ways, by stimulating secretion of ADP,
production of TxA,, and a pathway that is independent of these
(20, 40). Since ethanol inhibited PAF-induced responses of both
untreated and aspirin-treated rabbit platelets, it is apparent that
ethanol can also inhibit the PAF-induced pathway of aggregation
that is not dependent on the release of ADP or the formation of
TxA,;.

The concentration of ethanol used in these studies is physiolog-
ically tolerable; blood alcohol levels as high as 5.3 mg/ml have
been achieved in experiments with humans (9). Rabbits with
blood alcohol levels of approximately 4 mg/ml (22) are uncon-
scious, but they recover without any long-term ill effects.

Thus, we have found that ethanol, at physiologically tolerable
concentrations, did not inhibit ADP-induced platelet aggregation,
but did inhibit thromboxane production, -apparently by inhibiting
the activation or activity of the (phospho)lipases that are involved
in arachidonic acid mobilization. Ethanol also inhibited the
pathways of thrombin- and PAF-induced aggregation that are
independent of the formation of TxA,, possibly through inhibi-
tion of IP; formation (37). Thus, inhibition by ethanol can be
attributed to at least two, or possibly three, effects.

From these studies, however, we can only speculate as to the
mechanism(s) by which ethanol exerts its inhibitory effects on
platelet aggregation and secretion of granule contents. Tandon
and his associates (18) have shown that platelets with increased
platelet membrane fluidity brought about by depletion of choles-
terol from the membranes, have a reduced number of thrombin
receptors and a decreased aggregation response to thrombin. It
may be that ethanol, by virtue of its fluidizing effect of mem-
branes (17), alters exposure of specific receptors (41) (e.g.
receptors for thrombin and PAF, but not for ADP, epinephrine
or thromboxane) on the platelet plasma membrane, thereby
inhibiting stimulus-response coupling in platelets. A direct effect
of ethanol on the enzymes involved in stimulus-response coupling
cannot be ruled out, but seems unlikely because of the failure of
ethanol to inhibit the responses to arachidonic acid and to the
thromboxane mimetic U46619.
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The ubiquity and importance of the
receptors for catecholamines is obvious.
Catecholamines are regulators of such
diverse metabolic and physiological
functions that their receptors are defi-
nitely important.

Moreover, the adrenergic receptors pro-
vide model systems for trying to dissect
and understand the two major pathways
of signal transduction through the plas-
ma membrane. The first is the adenylate
cyclase system. The beta receptors sti-
mulate the enzyme. The alpha, recep-
tors inhibit the enzyme.

The alpha;-adrenergic receptors, which
are related to changes in calcium flux
and to changes in phosphatidyl inositol

breakdown. Finally, there are the ob-
vious clinical and therapeutic implica-
tions of work on these receptors. All the
adrenergic receptors can be manipulated
therapeutically through the use of a wide
variety of agonist and antagonist agents.
Moreover, the function of these recep-
tors, as well as various of their coupled
effector components, can be deranged
by both congenital and acquired patho-
physiological conditions.
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