Thromb Haemost 1995; 74(03): 916-922
DOI: 10.1055/s-0038-1649847
Original Article
Coagulation
Schattauer GmbH Stuttgart

Residence Time in Niches of Stagnant Flow Determines Fibrin Clot Formation in an Arterial Branching Model - Detailed Flow Analysis and Experimental Results

Armin J Reininger
1   Anatomisches Institute Technische Universität München, Neuherberg, Germany
,
Cornelia B Reininger
2   Chirurgische Klinik Innenstadt, Ludwig-Maximilians-Universität München, Neuherberg, Germany
,
Ulrich Heinzmann
3   Inst. für Pathologie,GSF-Forschungszentrum für Umwelt und Gesundheit, Neuherberg, Germany
,
Laurenz J Wurzinger
1   Anatomisches Institute Technische Universität München, Neuherberg, Germany
› Author Affiliations
Further Information

Publication History

Received 05 December 1994

Accepted after resubmission 02 May 1995

Publication Date:
09 July 2018 (online)

Summary

Deposition of blood components in branching flow has been investigated primarily with regard to platelets. We instead examined thrombin-induced fibrin clot formation in separated laminar as well as turbulent branching flow. The most rapid clot growth and largest clot mass was obtained at the lowest inflow rate. Increased inflow reduced the clot size and turbulence completely prevented clot formation. Examination of corresponding flow conditions revealed the recirculation zone in laminar flow to be characterized by two stationary, counterrotating vortices. Niches of stagnant flow, exhibiting long residence times, low wall shear rates and characterized by convergent flow, were spared between the bulk flow and these vortices. Here, fibrin clot growth continued even when shear rates were increased more than 100-fold. Our results indicate that, in branching flow, the long residence times and convergent flow characteristic of flow niches rather than shear rate are critical for fibrin clot formation.

 
  • References

  • 1 Virchow R. Über den Faserstoff V. Phlogose und Thrombose im GefäB-system. Gesammelte Abhandlungen zur wissenschaftlichen Medicin. Verlag v. Meidinger & Sohn & Corp; Frankfurt/Main: 1856: 458-550
  • 2 Eberth CJ, Schimmelbusch C. Die Thrombose nach Versuchen und Leichenbefunden. Ferdinand Enke-Verlag Stuttgart 1888; 1-144
  • 3 Müller-Mohnssen H. Die Strömungsverhältnisse in den Coronararterien und ihre Bedeutung für die Manifestierung der Coronarsklerose. In: Probleme der Coronardurchblutung. Bad Oeynhausener Gespräche II Springer-Verlag; Berlin: 1957. pp 179-196
  • 4 Murphy EA, Rowsell HC, Downie HG, Robinson GA, Mustard JF. Encrustation and atherosclerosis: The analogy between early in vivo lesions and deposits which occur in extracorporeal circulations. Canad Med Ass J 1962; 87: 259-274
  • 5 Karino T, Goldsmith HL. Role of blood cell-wall interactions in throm- bogenesis and atherogenesis: a microrheological study. Biorheology 1984; 21: 587-601
  • 6 Goldsmith HL, Turitto VT. Rheological aspects of thrombosis and haemostasis: Basic principles and applications. ICTH-report – subcommittee on rheology of the International Committee on Thrombosis and Haemostasis Thromb Haemost 1986; 55: 415-435
  • 7 Kratzer MA A, Kinder J. Streamline pattern and velocity components of flow in a model of a branching coronary vessel - possible functional implication for the development of localized platelet deposition in vitro. Microvasc Res 1986; 31: 250-265
  • 8 Caro CG, Fitz-Gerald JM, Schroter RC. Arterial wall shear and distribution of early atheroma in man. Nature 1969; 223: 1159-1161
  • 9 Reininger AJ, Heinzmann U, Reininger CB, Friedrich P, Wurzinger LJ. Flow mediated fibrin thrombus formation in an endotheliumlined model of arterial branching. Thromb Res 1994; 74: 629-641
  • 10 Dintenfass L, Rozenberg MC. The influence of the velocity gradient on in vitro blood coagulation and artificial thrombosis. J Atheroscler Res 1965; 5: 276-290
  • 11 Schmid Schönbein. Microrheology of Erythrocytes and Thrombocytes, Blood Viscosity and the Distribution of Blood Flow in the Microcirculation. In: Handbuch der Allgemeinen Pathologie III/7 Mikrozirkulation/ Microcirculation. Meessen ed Springer-Verlag; Berlin, Heidelberg, New York: 1977. pp 289-384
  • 12 Tippe A, Müller-Mohnssen H. Shear dependence of the fibrin coagulation kinetics in vitro. Thromb Res 1993; 72: 379-388
  • 13 Friedrich P, Reininger AJ. Occlusive thrombus formation on indwelling catheters: In vitro investigation and computational analysis. Thromb Haemost. in press 1994
  • 14 Ernst E. The role of fibrinogen as a cardiovascular risk factor. Atherosclerosis 1993; 100: 1-12
  • 15 Yarnell JW G, Baker IA, Sweetnam PM, Bainton D, O’Brien JR, Whitehead PJ, Elwood PC. Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease. The Caerphilly and Speedwell Collaborative Heart Disease Studies. Circulation 1991; 83: 836-844
  • 16 Reininger CB, Reininger AJ, Steckmeier B, Greinacher A, Lasser R, Schweiberer L. Platelet response to vascular surgery - a prelimimary study on the effect of aspirin and heparin. Thromb Res 1994; 76: 79-87
  • 17 De Cristofaro R, Di Cera E. Phenomenological analysis of the clotting curve. J Protein Chem 1991; 10: 455-468
  • 18 Weisel JW, Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophys J 1992; 63: 111-128
  • 19 Tippe A, Müller-Mohnssen H. Shear dependence of the fibrin coagulation kinetics in vitro. Thromb Res 1993; 72: 379-388
  • 20 Friedman MH. Arteriosclerosis research using vascular flow models - from 2-D branches to compliant replicas. J Biomech Eng T ASME 1993; 115: 595-601
  • 21 Caro CG, Dumoulin CL, Graham JM R, Parker KH, Souza SP. Secondary flow in the human common carotid artery imaged by MR angiography. J Biomech Eng 1992; 114: 147-149
  • 22 Liepsch DW. Effect of blood flow parameters on flow patterns at arterial bifurcations - studies in models. Atherosclerosis 1990; 15: 63-76
  • 23 Perktold K, Resch M. Numerical flow studies in human carotid artery bifurcations: Basic discussion f the geometric factor in atherogenesis. J Biomed Eng 1990; 12: 111-123
  • 24 Karino T, Goldsmith HL. Disturbed flow in models of branching vessels. Trans Amer Soc Artif Intern Organs 1980; 26: 500-506
  • 25 Clark HG, Puryear HA, Casper RA. Polymerization of fibrin in shear flow fields. Polym Eng Sci 1979; 19: 422-426
  • 26 Rippen-Berk H. The effects of shear on fibrin polymerization. Ph. D. Thesis Duke University; N.C., USA: 1986
  • 27 Zwaginga JJ, Sixma JJ, de Groot PG. Activation of endothelial cells induces platelet thrombus formation on their matrix. Studies of new in vitro thrombosis model with low molecular weight heparin as anticoagulant Arteriosclerosis 1990; 10: 49-61
  • 28 Tijburg PN M, IJsseldijk MJ W, Sixma JJ, de Groot PG. Quantification of fibrin deposition in flowing blood with peroxidase-labeled fibrinogen. High shear rates induce decreased fibrin deposition and appearance of fibrin monomers. Arterioscler Thromb 1991; 11: 211-220
  • 29 Mailhac A, Badimon JJ, Fallon JT, Fernandezortiz A, Meyer B, Chesebro JH, Fuster V, Badimon L. Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis - Relative contribution of fibrin(ogen) and platelets. Circulation 1994; 90: 988-996