Thromb Haemost 1995; 74(05): 1252-1254
DOI: 10.1055/s-0038-1649921
Original Article
Clinical Studies
Schattauer GmbH Stuttgart

Variation of Phylioquinone (Vitamin K1) Concentrations in Hemodialysis Patients

Martin Kohlmeier
1   The Dept, of Nutrition, Schools of Medicine and Public Health, UNC, Chapel Hill, NC, USA
2   The Institut für Klin. Chem. Biochem., Freie Universität, Berlin, Germany
,
Jörg Saupe
3   The Dept. Internal Medicine III, Krankenhaus Moabit, Berlin, Germany
,
Hans-Joachim Drossel
4   The Zentrallabor, Urban Krankenhaus, Berlin, Germany
,
Martin J Shearer
5   The Haemophilia Centre, St. Thomas’ Hospital, London, UK
› Author Affiliations
Further Information

Publication History

Received 31 May 1995

Accepted after revision 07 August 1995

Publication Date:
10 July 2018 (online)

Summary

Intra- and interindividual variation of phylloquinone (vitamin K1) concentrations was investigated by repeat analysis of serum from 28 hemodialysis patients with different apolipoprotein E genotypes. Phylloquinone concentrations ranged from 0.1 to 9.0 nM, with a mean of 1.08 nM (standard deviation 1.90 nM).

Most of the variation in serum phylloquinone concentrations was due to differences between patients; the ratio of intra-to interindividual variation was 0.17. Serum triglyceride concentrations and apoE genotype together accounted for 64% of interindividual variation; in contrast, only 6% of intraindividual variation could be attributed to differences in triglyceride concentrations.

The small residual variance implies that different phylloquinone consumption levels contributed relatively little to the variation of serum concentrations (<36% of interindividual variance). The results suggest that individual disposition is a more important determinant of serum phylloquinone concentrations than dietary phylloquinone intake.

 
  • References

  • 1 Allison PM, Mummah-Schendel LL, Kindberg CG, Harms CS, Bang NU, Suttie JW. Effects of a vitamin K-deficient diet and antibioticsin normal human volunteers. J Lab Clin Med 1987; 110: 180-188
  • 2 Ferland G, Sadowski JA, O’Brien ME. Dietary induced subclinical vitamin K deficiency in normal human subjects. J Clin Invest 1993; 91: 1761-1768
  • 3 Usui Y, Tanimura H, Nishimura N, Kobayashi N, Okanoue T, Ozawa K. Vitamin K concentrations in the plasma and liver of surgical patients. Am J Clin Nutr 1990; 51: 846-852
  • 4 Saupe J, Shearer MJ, Kohlmeier M. Phylloquinone transport and its influence on γ-carboxyglutamate residues of osteocalcin in patients on maintenance hemodialysis. Am J Clin Nutr 1993; 58: 204-208
  • 5 Malluche H, Faugere MC. Renal bone disease. 1990 An unmet challenge for the nephrologist Kidney Int 1990; 38: 193-211
  • 6 Akiba T, Kurihara S, Tachibana K, Kuwahara M, Sakamoto H, Yoneshima H, Marumo F. Vitamin K (K) increased bone mass (BM) in hemodialysis patients (pts) with low turnover bone disease (LTOBD). J Am Soc Nephrol 1991; 2: 608
  • 7 Price PA. Role of vitamin K-dependent proteins in bone metabolism. Annu Rev Nutr 1988; 8: 565-583
  • 8 Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: Vitamin K-dependent proteins in bone. Physiol Rev 1989; 68: 990-1047
  • 9 Vermeer C, Knapen MH J, Jie KS G, Grobee DE. Physiological importance of extrahepatic vitamin K-dependent carboxylation reactions. Ann NY Acad Sci 1992; 669: 21-31
  • 10 Kohlmeier M, Saupe J, Shearer MJ. Risk of bone fracture in hemodialysis patients is related to vitamin K status. J Bone Min Res 1995; 10: S361
  • 11 Robert D, Jorgetti V, Leclerq M, Lacour B, Ulmann A, Bourdeau A, Drtieke T. Does vitamin K excess induce ectopic calcifications in hemodialysis patients. Clin Nephrol 1985; 24: 300-304
  • 12 Mattock M, Shearer MJ, Rahim S, Redmond S, El-Gohari R, Barkhan P. The plasma transport of vitamin K, (phylloquinone) inhyperlipoproteinemia. Clin Sci 1983; 64: 63P
  • 13 Sadowski JA, Hood SJ, Dallal GE, Garry PJ. Phylloquinone in plasma from elderly and young adults: factors influencing its concentration. Am J Clin Nutr 1989; 50: 100-108
  • 14 Mahley RW, Hussain MM. Chylomicron and chylomicron remnant catabolism. Curr Opin Lipidol 1991; 2: 170-176
  • 15 Kohlmeier M. Vereinfachte Lipoproteinanalyse mit der Ultrazentrifuge. Arztl Lab 1986; 32: 46-52
  • 16 Kohlmeier M. Simple method of preparing and quantifying very-low- density lipoprotein. Clin Chem 1984; 30: 295-297
  • 17 Kohlmeier M, Schlierf G. Effect of storage on HDL-cholesterol measurements. Clin Chem 1982; 28: 396-397
  • 18 Roeschlau P, Bernt E, Gruber W. Enzymatic assay of cholesterol in plasma. Z Klin Chem Klin Biochem 1974; 12: 226-232
  • 19 Kohlmeier M. Direct enzymic measurement of glycerides in serum andin lipoprotein fractions. Clin Chem 1986; 32: 63-66
  • 20 Shearer MJ. Measurement of phylloquinone (vitamin Kj) in serum orplasma by HPLC. In: Nutritional status assessment - a manual for population studies Fidanza F. (ed) London: Chapman & Hall: 1991. pp 214-220
  • 21 Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with Hhal. J Lip Res 1990; 31: 545-549
  • 22 Kohlmeier M, Drossel HJ, Sinha P, Kottgen E. Rapid and simple method for the identification of apolipoprotein E isomorphic phenotypes from whole serum. Electrophoresis 1992; 13: 258-261
  • 23 Shearer MJ. Vitamin K metabolism and nutriture. Blood Rev 1992; 6: 92-104
  • 24 Kohlmeier M, Saupe A, Saupe J. Anticoagulant response to phenprocou- mon is related to apolipoprotein E genotype. Klin Lab 1995; 41: 359-361