Thromb Haemost 1996; 76(03): 453-459
DOI: 10.1055/s-0038-1650599
Original Article
Schattauer GmbH Stuttgart

Characterization of Recombinant von Willebrand Factors Mutated on Cysteine 509 or 695

Virginie Siguret
1   VS and ASR were supported by a grant from the Fondation pour la Recherche Médicale
INSERM U.143, Hôpital de Bicêtre, le Kremlin-Bicêtre, France
,
Anne-Sophie Ribba
1   VS and ASR were supported by a grant from the Fondation pour la Recherche Médicale
INSERM U.143, Hôpital de Bicêtre, le Kremlin-Bicêtre, France
,
Olivier Christophe
INSERM U.143, Hôpital de Bicêtre, le Kremlin-Bicêtre, France
,
Ghislaine Chérel
INSERM U.143, Hôpital de Bicêtre, le Kremlin-Bicêtre, France
,
Bernadette Obert
INSERM U.143, Hôpital de Bicêtre, le Kremlin-Bicêtre, France
,
Christine Rouault
INSERM U.143, Hôpital de Bicêtre, le Kremlin-Bicêtre, France
,
Toshiya Nishikubo
INSERM U.143, Hôpital de Bicêtre, le Kremlin-Bicêtre, France
,
Dominique Meyer
INSERM U.143, Hôpital de Bicêtre, le Kremlin-Bicêtre, France
,
Jean-Pierre Girma
1   VS and ASR were supported by a grant from the Fondation pour la Recherche Médicale
,
Geneviève Piétu
INSERM U.143, Hôpital de Bicêtre, le Kremlin-Bicêtre, France
› Author Affiliations
Further Information

Publication History

Received 18 October 1995

Accepted after resubmission 22 May 1996

Publication Date:
10 July 2018 (online)

Summary

The interacting domain of vWF with platelet GPIb has been shown to overlap the large A1 loop formed by the intra-chain disulfide bond linking Cys 509 to Cys 695. In order to further investigate the role of the conformation of this region, we have expressed in COS-7 cells three mutated full-length recombinant vWFs (rvWFs) in which the substitutions Cys509Gly, Cys509Arg or Cys695Gly have been introduced by site-directed mutagenesis. SDS-agarose gel electrophoresis demonstrated an impaired multimerization of the mutants with undetectable high molecular weight multimers and a decrease of the relative amounts of the intermediate sized multimers. Binding analysis showed that rvWFC509G and rvWFC509R did not interact with botrocetin but spontaneously interacted with GPIb; the latter binding remained unchanged in the presence of ristocetin. This indicates that the substitution of Cys509 by Gly or Arg creates a conformation of vWF that increases its binding to GPIb. In contrast, rvWFC695G which did not react with botrocetin was also unable to interact with GPIb even in the presence of ristocetin, indicating that sequences interacting with GPIb are masked and/or disrupted. In conclusion, the substitution of each of the Cys509 and 695 results in mutant proteins which may be “locked” into active or inactive conformations in regard to the binding to platelet GPIb receptor.

 
  • References

  • 1 Ruggeri ZM, Ware J. The structure and function of von Willebrand factor. Thromb Haemost 1992; 67: 594-599
  • 2 Meyer D, Girma JP. von Willebrand Factor: structure and function. Thromb Haemost 1993; 70: 99-104
  • 3 Gralnick HR, Williams SB, Morisato DK. Effect of the multimeric structure of the factor VIH/von Willebrand factor protein on binding to platelets. Blood 1981; 58: 387-397
  • 4 Scott JP, Montgomery RR, Retzinger GS. Dimeric ristocetin flocculates proteins, binds to platelets and mediates von Willebrand factor-dependent agglutination of platelets. J Biol Chem 1991; 266: 8149-8155
  • 5 Andrews RK, Booth WJ, Gorman JJ, Castaldi PA, Bemdt MC. Purification of botrocetin from Bothrops jararaca venom. Analysis of the botrocetin-mediated interaction between von Willebrand factor and the human platelet membrane glycoprotein Ib-IX complex. Biochemistry 1989; 28: 8317-8326
  • 6 Sugimoto M, Mohri H, McClintock RA, Ruggeri ZM. Identification of discontinuous von Willebrand factor sequences involved in complex formation with botrocetin. J Biol Chem 1991; 266: 18172-18178
  • 7 Bemdt MC, Ward CM, Booth WJ, Castaldi PA, Mazurov AV, Andrews RK. Identification of aspartic acid 514 through glutamic acid 542 as a glycoprotein Ib-IX complex receptor recognition sequence in von Willebrand factor. Mechanism of modulation of von Willebrand factor by ristocetin and botrocetin. Biochemistry 1992; 31: 11144-11151
  • 8 Hoylaerts MF, Nuyts K, Peerlinck K, Deckmyn H, Vermylen J. Promotion of binding of von Willebrand factor to platelet glycoprotein lb by dimers of ristocetin. Biochem J 1995; 306: 453-463
  • 9 Fujimura Y, Titani K, Holland LZ, Russell SR, Roberts JR, Elder JH, Ruggeri ZM, Zimmerman TS. von Willebrand factor. A reduced and alkylated 52/48-kDa fragment beginning at amino acid residue 449 contains the domain interacting with platelet glycoprotein lb. J Biol Chem 1986; 261: 381-385
  • 10 Andrews RK, Gorman JJ, Booth WJ, Corino GL, Castaldi PA, Bemdt MC. Cross-linking of a monomeric 39/34-kDa dispase fragment of von Willebrand factor (Leu-480/Val-481 -Gly-718) to the N-terminal region of the a-chain of membrane glycoprotein lb on intact platelets with bis(sulfosuc-cinimidyl) suberate. Biochemistry 1989; 28: 8326-8336
  • 11 Sugimoto M, Ricca G, Hrinda ME, Schreiber AB, Searfoss GH, Bottini E, Ruggeri ZM. Functional modulation of the isolated glycoprotein lb binding domain of von Willebrand factor expressed in Escherichia coli. Biochemistry 1991; 30: 5202-5209
  • 12 Azuma H, Dent JA, Sugimoto M, Ruggeri ZM, Ware J. Independent assembly and secretion of a dimeric adhesive domain of von Willebrand factor containing the glycoprotein Ib-binding site. J Biol Chem 1991; 266: 12342-12347
  • 13 Gralnick HR, Williams S, McKeown L, Kramer W, Krutzsch H, Gorecki M, Pinet A, Garfmkel LI. A monomeric von Willebrand factor fragment, Leu-504-Ser-728, inhibits von Willebrand factor interaction with glycoprotein Ib-IX. Proc Natl Acad Sci USA 1992; 89: 7880-7884
  • 14 Cruz MA, Handin RI, Wise RJ. The interaction of the von Willebrand factor-A1 domain with platelet glycoprotein Ib/IX. J Biol Chem 1993; 268: 21238-21245
  • 15 Miura S, Fujimura Y, Sugimoto M, Kawasaki T, Ikeda Y, Titani K, Yoshioka A. Structural elements influencing von Willebrand factor (vWF) binding affinity for platelet glycoprotein Ib within a dispase-digested vWF fragment. Blood 1994; 84: 1553-1558
  • 16 Titani K, Kumar S, Takio K, Ericsson LH, Wade RD, Ashida K, Walsh KA, Chopek MW, Sadler JE, Fujikawa K. Amino acid sequence of human von Willebrand factor. Biochemistry 1986; 25: 3171-3184
  • 17 Mohri H, Fujimura Y, Shima M, Yoshioka A, Houghten RA, Ruggeri ZM, Zimmerman TS. Structure of von Willebrand factor domain interacting with glycoprotein Ib. J Biol Chem 1988; 263: 17901-17904
  • 18 Sixma JJ, Schiphorst ME, Verweij CL, Pannekoek H. Effect of deletion of the A1 domain of von Willebrand factor on its binding to heparin, collagen and platelets in the presence of ristocetin. Eur J Biochem 1991; 196: 369-375
  • 19 Sugimoto M, Dent J, McClintock R, Ware J, Ruggeri ZM. Analysis of structure-function relationships in the platelet membrane glycoprotein Ib-binding domain of von Willebrand’s factor by expression of deletion mutants. J Biol Chem 1993; 268: 12185-12192
  • 20 Azuma H, Hayashi T, Dent JA, Ruggeri ZM, Ware J. Disulfide bond requirements for assembly of the platelet glycoprotein-Ib-binding domain of von Willebrand factor. J Biol Chem 1993; 268: 2821-2827
  • 21 Matsushita T, Sadler JE. Identification of amino acid residues essential for von Willebrand factor binding to platelet glycoprotein Ib. J Biol Chem 1995; 270: 13406-13414
  • 22 Lavergne JM, de Paillette L, Bahnak BR, Ribba AS, Fressinaud E, Meyer D, Pietu G. Defects in type IIA von Willebrand disease: a cysteine 509 to arginine substitution in the mature von Willebrand factor disrupts a disulphide loop involved in the interaction with platelet glycoprotein Ib-IX. Br J Haematol 1992; 82: 66-72
  • 23 Christophe O, Ribba AS, Baruch B, Obert B, Rouault C, Niinomi K, Pietu G, Meyer D, Girina JP. Influence of mutations and size of multimers in type II von Willebrand disease upon the function of von Willebrand factor. Blood 1994; 83: 3553-3561
  • 24 Voorberg J, Fontijn R, Van Mourik JA, Pannekoek H. Domains involved in multimer assembly of von Willebrand factor (vWF): multimerization is independent of dimerization. EMBO J 1990; 9: 797-803
  • 25 Ribba AS, Voorberg J, Meyer D, Pannekoek H, Pietu G. Characterization of recombinant von Willebrand Factor corresponding to mutations in type IIA and type IIB von Willebrand disease. J Biol Chem 1992; 267: 23209-23215
  • 26 Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 1989; 77: 51-59
  • 27 Bonthron D, Orr EC, Mitsock LM, Ginsburg D, Handin RI, Orkin SH. Nucleotide sequence of pre-pro-von Willebrand factor cDNA. Nucleic Acids Res 1986; 14: 7125-7127
  • 28 Ribba AS, Christophe O, Derlon A, Cherel G, Siguret V, Girina JP, Meyer D, Pietu G. Discrepancy between IIA phenotype and IIB genotype in a patient with a variant of von Willebrand disease. Blood 1994; 83: 833-841
  • 29 Meyer D, Baumgartner HR, Edgington TS. Hybridoma antibodies to human von Willebrand factor. Characterization of seven clones. Br J Haematol 1984; 57: 609-620
  • 30 Ardaillou N, Girina JP, Meyer D, Lavergne JM, Shoa’i I, Larrieu MJ. “Variants” of von Willebrand disease. Demonstration of a decreased antigenic reactivity by immunoradiometric assay. Thromb Res 1978; 12: 817-830
  • 31 Pietu G, Ribba AS, Cherel G, Siguret V, Obert B, Rouault C, Ginsburg D, Meyer D. Epitope mapping of inhibitory monoclonal antibodies to human von Willebrand factor by using recombinant cDNA libraries. Thromb Haemost 1994; 71: 788-792
  • 32 Christophe O, Rouault C, Obert B, Pietu G, Meyer D, Girina JP. A monoclonal antibody (B724) to von Willebrand factor recognizing an epitope within the A1 disulphide loop (Cys509-Cys 695) discriminates between type 2A and type 2B von Willebrand disease. Br J Haematol 1995; 90: 195-203
  • 33 Girma JP, Takahashi Y, Yoshioka A, Diaz J, Meyer D. Ristocetin and botrocetin involve two distinct domains of von Willebrand factor for binding to platelet membrane glycoprotein lb. Thromb Haemost 1990; 64: 326-332
  • 34 Pietu G, Fressinaud E, Girma JP, Nieuwenhuis K, Rothschild C, Meyer D. Binding of von Willebrand factor to collagen and to collagen-stimulated platelets. J Lab Clin Med 1987; 109: 637-646
  • 35 Coller BS, Peerschke El, Scudder LE, Sullivan CA. Studies with a murine monoclonal antibody that abolishes ristocetin-induced binding of von Willebrand factor to platelets: additional evidence in support of GPIb as a platelet receptor for von Willebrand factor. Blood 1983; 61: 99-110
  • 36 Coller BS. A new murine monoclonal antibody reports an activation-dependent change in the conformation and/or microenvironment of the platelet GPIMIIa complex. J Clin Invest 1985; 76: 101-108
  • 37 Fraker PJ, Speck JC. Protein and cell membrane iodination with a sparingly soluble chloroamide 1,3,4,6-tetrachlor-3a-6a-diphenyl glycoluril. Biochem Biophys Res Comm 1978; 80: 849-857
  • 38 Nishino M, Girma JP, Rothschild C, Fressinaud E, Meyer D. A new variant of von Willebrand disease with defective binding to factor VIII. Blood 1989; 74: 1591-1599
  • 39 Marti T, Rosselet SJ, Titani K, Walsh KA. Identification of disulfide-bridged substructures within human von Willebrand factor. Biochemistry 1987; 26: 8099-8109
  • 40 Dong Z, Thoma RS, Crimmins DL, McCourt DW, Tuley EA, Sadler JE. Disulfide bonds required to assemble functional von Willebrand factor multimers. J Biol Chem 1994; 269: 6753-6758
  • 41 Lyons SE, Bruck ME, Bowie EJW, Ginsburg D. Impaired intracellular transport produced by a subset of type IIA von Willebrand disease mutations. J Biol Chem 1992; 267: 4424-4430
  • 42 Hilbert L, Gaucher C, Mazurier C. Identification of two mutations (Arg611Cys and Arg611His) in the A1 loop of von Willebrand factor (vWF) responsible for type 2 von Willebrand disease with decreased platelet-dependent function of vWF. Blood 1995; 86: 1010-1018
  • 43 Sadler JE, Matsushita T, Dong Z, Tuley EA, Westfield LA. Molecular mechanism and classification of von Willebrand disease. Thromb Haemost 1995; 74: 161-166
  • 44 Gaucher C, de Romeuf C, Rauismorret M, Corazza F, Fondu P, Mazurier C. Diagnosis of subtype 2B von Willebrand disease in a patient with 2A phenotype of plasma von Willebrand factor. Thromb Haemost 1995; 73: 610-616
  • 45 Kroner PA, Kluessendorf ML, Scott JP, Montgomery RR. Expressed full-length von Willebrand factor containing missense mutations linked to type-IIB von Willebrand disease shows enhanced binding to platelets. Blood 1992; 79: 2048-2055
  • 46 Read MS, Smith SV, Lamb MA, Brinkhous KM. Role of botrocetin in platelet agglutination: formation of an activated complex of botrocetin and von Willebrand factor. Blood 1989; 74: 1031-1035