Thromb Haemost 1989; 62(03): 927-933
DOI: 10.1055/s-0038-1651030
Original Article
Schattauer GmbH Stuttgart

The Differential Glycosylation of Human Pro-Urokinase from Various Recombinant Mammalian Cell Lines Does Not Affect Activity and Binding to PAI-1

Edoardo Sarubbi
The Merrell Dow Research Institute, Lepetit Research Center, Gerenzano (Varese), Italy
,
M Luisa Nolli
The Merrell Dow Research Institute, Lepetit Research Center, Gerenzano (Varese), Italy
,
Federico Robbiati
The Merrell Dow Research Institute, Lepetit Research Center, Gerenzano (Varese), Italy
,
Adolfo Soffientini
The Merrell Dow Research Institute, Lepetit Research Center, Gerenzano (Varese), Italy
,
Franco Parenti
The Merrell Dow Research Institute, Lepetit Research Center, Gerenzano (Varese), Italy
,
Giovanni Cassani
The Merrell Dow Research Institute, Lepetit Research Center, Gerenzano (Varese), Italy
› Author Affiliations
Further Information

Publication History

Received: 01 May 1989

Accepted after revision 30 June 1989

Publication Date:
30 June 2018 (online)

Summary

Human chromosomal DNA encoding single-chain urokinase-type Plasminogen Activator (scu-PA, or pro-urokinase) was inserted in an expression plasmid and transfected in human A431, mouse LB6 and CHO cells. LB6 cells were also transfected with a Bovine Papilloma Virus derivative containing the scu-PA gene. Human scu-PA was purified from cell supernatants of recombinant clones and characterized for structure and function.

All recombinant scu-PAs are undistinguishable from human urine-derived scu-PA for peptide backbone, but possess a higher sugar content, as revealed by SDS-PAGE analysis after digestion with glycopeptidase F. This difference is partly due to an increased sialic acid content, as shown by analysis of neuraminidase-treated scu-PAs.

No difference was found, however, among recombinant and natural scu-PAs in the kinetics of conversion into two-chain active forms (tcu-PAs) by human plasmin, and in the KM and kcat values of tcu-PA activity on the chromogenic substrate S-2444 and on human plasminogen. Also, recombinant and non-recombinant tcu-PAs displayed similar dose-response curves for binding to the endothelial inhibitor PAI-1.

In conclusion, the glycosylation pattern of u-PA does not affect its interaction with the plasma proteins directly involved in its fibrinolytic function.

 
  • References

  • 1 Bachmann F. Fibrinolysis. In: Thrombosis and Haemostasis 1987. Verstraete M, Vermylen J, Lijnen HR, Arnout J. (eds). International Society on Thrombosis and Haemostasis and Leuven University Press; Leuven: 1987. pp 227-265
  • 2 Reich E. Activation of plasminogen: a general mechanism for producing localized extracellular proteolysis. In: Molecular Basis of Biological Degradative Processes. Berlin RD, Hermann H, Lepow IH, Tanzer JM. (eds). Academic Press Inc; New York: 1978. pp 155-169
  • 3 Kasai S, Arimura H, Nishida M, Suyama T. Primary structure of single-chain pro-urokinase. J Biol Chem 1985; 260: 12382-12389
  • 4 Steffens GJ, Gunzler WA, Otting F, Frankus E, Flohe L. The complete aminoacid sequence of low molecular mass urokinase from human urine. Hoppe-Seyler's Z Physiol Chem 1982; 363: 1043-1058
  • 5 Carrell RW, Christey PB, Boswell DR. Serpins: antithrombin and other inhibitors of coagulation and fibrinolysis. Evidence from aminoacid sequences. In: Thrombosis and Haemostasis 1987. Verstraete M, Vermylen J, Lijnen HR, Arnout J. (eds). International Society on Thrombosis and Haemostasis and Leuven University Press; Leuven: 1987. pp 1-15
  • 6 Travis J, Salvesen GS. Human plasma proteinase inhibitors. Annu Rev Biochem 1983; 52: 655-709
  • 7 Darras V, Thienpont M, Stump DC, Collen D. Measurement of urokinase-type Plasminogen Activator (u-PA) with an enzyme-linked immunosorbent assay (ELISA) based on three murine monoclonal antibodies. Thromb Haemostas 1986; 56: 411-444
  • 8 Nolli ML, Sarubbi E, Corti A, Robbiati F, Soffientini A, Blasi F, Parenti F, Cassani G. Production and characterisation of human recombinant single chain urokinase-type Plasminogen Activator from mouse cells. Fibrinolysis 1989; 3: 101-106
  • 9 Kobata A. The carbohydrates of glycoproteins. In: Biology of Carbohydrates. Ginsburg V, Robbins PW. (eds). (Vol; 2). John Wiley and Sons; New York: 1984. pp 87-162
  • 10 Parekh RB, Tse AG D, Dwek RA, Williams AF, Rademacher TW. Tissue-specific N-glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1. EMBO J 1987; 6: 1233-1244
  • 11 Nair BC, Johnson DE, Majeska RJ, Rodkey JA, Bennett CD, Rodan GA. Rat alkaline phosphatase. Arch Biochem Biophys 1987; 254: 28-34
  • 12 Sheares BT, Robbins PW. Glycosylation of albumin in a heterologous cell: Analysis of oligosaccharide chains of the cloned glycoprotein in mouse L cells. Proc Natl Acad Sci USA 1986; 83: 1993-1997
  • 13 Wasley LC, Atha DH, Bauer KA, Kaufman RJ. Expression and characterization of human antithrombin III synthesized in mammalian cells. J Biol Chem 1987; 262: 14766-14772
  • 14 Patthy L. Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules. Cell 1985; 41: 657-663
  • 15 Balland A, Faure T, Carvallo D, Cordier P, Ulrich P, Fournet B, De La Salle H, Lecocq JP. Characterisation of two differently processed forms of human recombinant factor IX synthesized in CHO cells transformed with a polycistronic vector. Eur J Biochem 1988; 172: 565-572
  • 16 Sarver N, Muschel R, Byrne JC, Khoury G, Howley PM. Enhancer-dependent expression of the rat preproinsulin gene in bovine papillomavirus type 1 vectors. Mol Cell Biol 1985; 5: 3507-3516
  • 17 Pozzatti R, Muschel R, William SJ, Padmanabhan R, Howard B, Liotta L, Khoury G. Primary rat embryo cells transformed by one or two oncogenes show different metastatic potentials. Science 1986; 232: 223-227
  • 18 Corti A, Nolli ML, Cassani G. Differential detection of single-chain and two-chain urokinase-type Plasminogen Activator by a new Immunoadsorbent Amidolytic Assay (IAA). Thromb Haemostas 1986; 56: 407-410
  • 19 Nolli ML, Corti A, Soffientini A, Cassani G. A monoclonal antibody that recognizes the receptor binding region of human urokinase Plasminogen Activator. Thromb Haemostas 1986; 56: 214-218
  • 20 Corti A, Nolli ML, Soffientini A, Cassani G. Purification and characterization of single-chain urokinase-type Plasminogen Activator (Pro-urokinase) from human A431 cells. Thromb Haemostas 1986; 56: 219-224
  • 21 Holmberg L, Bladh B, Astedt B. Purification of urokinase by affinity chromatography. Biochim Biophys Acta 1976; 445: 215-222
  • 22 de Vries C, Veerman H, Blasi F, Pannekoek H. Artificial exon shuffling between tissue-type Plasminogen Activator (t-PA) and urokinase (u-PA): A comparative study on the fibrinolytic properties of t-PA/u-PA hybrid proteins. Biochemistry 1988; 27: 2565-2572
  • 23 Gorman C, Padmanabhan R, Howard BH. High efficiency DNA-mediated transformation of primate cells. Science 1983; 221: 551-553
  • 24 Stephens PE, Heutschel CC G. The bovine papillomavirus genome and its uses as a eukaryotic vector. Biochem J 1987; 248: 1-11
  • 25 Astrup T, Mullertz S. The fibrin plate method for estimating fibrinolytic activity. Arch Biochem Biophys 1952; 40: 346-351
  • 26 Tarentino AL, Gomez CM, Plummer TH. Deglycosylation of asparagine-linked glycans by peptide: N-glycosidase F. Biochemistry 1985; 24: 4665-4671
  • 27 Baezinger JU, Fiete D. Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J Biol Chem 1979; 254: 9795-9799
  • 28 Ipsen HH, Christensen U. Kinetic studies of urokinase-catalysed hydrolysis of 5-oxo-L-prolylglycyl-L-arginine 4-nitroanilide. Biochim Biophys Acta 1980; 613: 476-481
  • 29 Collen D, Zamarron C, Lijnen HR, Hoylaerts M. Activation of Plasminogen by pro-urokinase. I. Kinetics. J Biol Chem 1986; 261: 1253-1266
  • 30 Heckman CM, Loskutoff DJ. Endothelial cells produce a latent inhibitor of Plasminogen Activator that can be activated by denaturants. J Biol Chem 1985; 260: 11581-11587
  • 31 McLellan WL, Vetterlein D, Roblin R. The glycoprotein nature of human Plasminogen Activators. FEBS Lett 1980; 115: 181-184
  • 32 Blasi F. Surface receptors for urokinase Plasminogen Activator. Fibrinolysis 1988; 2: 73-84
  • 33 Collen D, Stassen JM, Marafino BJ, Builder S, De Cock F, Ogez J, Tajiri D, Pennica D, Bennett WF, Salwa J, Hoyng CF. Biological properties of human tissue-type Plasminogen Activator obtained by expression of recombinant DNA in mammalian cells. J Pharmacol Exp Ther 1984; 231: 146-152
  • 34 Paques EP, Haigwood NL, Mullenbach GT, Moore GK, DesJardin LE, Tabrize A, Brown-Shimer SL. Mutants of human tissue-Plasminogen Activator with improved properties in vitro. Fibrinolysis 1988; 2 (Suppll): Abs. 280
  • 35 Hotchkiss A, Refino C, Leonard CK, O'Connor JV, Crowley C, McCabe J, Tate K, Nakamura J, Powers D, Levinson A, Mohler M, Spellman M. The influence of carbohydrate structure on the clearance of recombinant tissue-type Plasminogen Activator. Thromb Haembstas 1988; 60: 255-261
  • 36 Kuiper J, Otter M, Rijken DC, van Berkel Th JC. In vivo interaction of tissue-type Plasminogen Activator with rat liver cells. Fibrinolysis 1988; 2 (Suppll): Abs. 57
  • 37 Tanswell P, Scluter M, Krause J. Pharmacokinetics and isolated liver perfusion of carbohydrate modified tissue-type Plasminogen Activator. Fibrinolysis 1988; 2 (Suppll): Abs. 61
  • 38 Stoppelli MP, Corti A, Soffientini A, Cassani G, Blasi F, Assoian RK. Differentiation-enhanced binding of the amino-terminal fragment of human urokinase Plasminogen Activator to a specific receptor on U937 monocytes. Proc Natl Acad Sci USA 1985; 82: 4939-4943