Thromb Haemost 1992; 68(02): 130-135
DOI: 10.1055/s-0038-1656337
Original Article
Schattauer GmbH Stuttgart

Fibrin Gel Network Characteristics and Coronary Heart Disease: Relations to Plasma Fibrinogen Concentration, Acute Phase Protein, Serum Lipoproteins and Coronary Atherosclerosis

Kamaran Fatah
1   The Departments of Clinical Chemistry and Blood Coagulation, Stockholm, Sweden
,
Anders Hamsten
2   Internal Medicine, Karolinska Hospital, Stockholm, Sweden
3   King Gustaf V Research Institute, Stockholm, Sweden
,
Birger Blombäck
4   Department of Blood Coagulation Research, Karolinska Institute, Stockholm, Sweden
5   New York Blood Center, New York, NY, U.S.A.
,
Margareta Blombäck
1   The Departments of Clinical Chemistry and Blood Coagulation, Stockholm, Sweden
› Author Affiliations
Further Information

Publication History

Received 06 September 1991

Accepted after revision 06 March 1992

Publication Date:
03 July 2018 (online)

Summary

The native fibrin gel structure formed in vitro from plasma samples was examined by liquid permeation of the hydrated fibrin gel networks in 18 men who had suffered a myocardial infarction before the age of 45 years and in 20 control subjects. Patients with an elevated plasma fibrinogen concentration had a considerably lower fibrin gel porosity (permeability coefficient, K s) compared with patients with a normal plasma fibrinogen level and with controls. The calculated fiber mass-length ratio of the fibrin gel networks was decreased in both patient groups. Gel porosity differed markedly between individuals at a given plasma fibrinogen concentration. Fairly strong inverse correlations were found between plasma orosomucoid level on the one hand and K s (r = –0.617, p <0.01) or fiber mass-length ratio (r = –0.499, p <0.05) on the other. The low density lipoprotein (LDL) cholesterol concentration also correlated inversely with K s (r = –0.471, p <0.05) and fiber mass-length ratio (r = –.522, p <0.05). Significant inverse relations, which were independent of plasma fibrinogen and lipoprotein concentrations, were detected between K s (r = –.519, p <0.05) and calculated fiber mass-length ratio (r = –.723, p <0.001) and number and severity of coronary artery stenoses determined by angiography. A proneness to formation of tight, rigid and space-filling fibrin network structures with small pores thus appears to be associated with premature coronary artery disease.

 
  • References

  • 1 Lowe GDO, Drummond MM, Lorimer AR. et al Relation between extent of coronary artery disease and blood viscosity. Br Med J 1980; 281: 673-674
  • 2 Hamsten A, Blombäck M, Wiman B, Svensson J, Szamosi A, de Faire U, Mettinger L. Haemostatic function in myocardial infarction. Br Heart J 1986; 55: 58-66
  • 3 Handa K, Kono S, Saku K, Sasaki J, Kawano T, Sasaki Y, Hiroki T, Arakawa K. Plasma fibrinogen levels as an independent indicator of severity of coronary atherosclerosis. Atherosclerosis 1989; 77: 209-213
  • 4 Meade TW, North WRS, Chakrabarti R, et al. Haemostatic function and cardiovascular death: early results of a prospective study. Lancet 1980; i: 1050-1054
  • 5 Wilhelmsen L, Svärdsudd K, Korsan-Bengtsson K, Larsson B, Welin L, Tibblin G. Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med 1984; 311: 501-505
  • 6 Stone MC, Thorpe JM. Plasma fibrinogen – a major coronary risk factor. J R Coll Gen Pract 1985; 35: 565-569
  • 7 Meade TW, Mellows S, Brozovic M, et al. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park heart study. Lancet 1986; ii: 533-537
  • 8 Kannel WB, Wolf PA, Castelli WP, D'Agostino RB. Fibrinogen and risk of cardiovascular disease. The Framingham Study. JAMA 1987; 258: 1183-1186
  • 9 Smith EB, Staples EM, Dietz HS, Smith RH. Role of endothelium in sequestration of lipoprotein and fibrinogen in aortic lesions, thrombi and graft pseudointima. Lancet 1979; ii: 812-816
  • 10 Smith SB, Staples EM. Haemostatic factors in human aortic intima. Lancet 1981; i: 1171-1179
  • 11 Doolittle RF. Fibrinogen and fibrin. Annu Rev Biochem 1984; 53: 195-229
  • 12 Blombäck B. Fibrinogen to fibrin – An overview. Fibrinogen – Structural Variants and Interactions Walter de Gruyter; Berlin: 1985: 33-42
  • 13 Crabtree G. The molecular biology of fibrinogen. The Molecular Basis of Blood Diseases WB Saunders; Philadelphia, PA: 1987: 631-661
  • 14 Blombäck B, Bannerjee D, Carlsson K, Hamsten A, Hessel B, Procyk R, Silveira A, Zacharski L. Native fibrin gel networks and factors influencing their formation in health and disease. Fibrinogen, Thrombosis, Coagulation, and Fibrinolysis Plenum Press; New York: 1991: 1-23
  • 15 Blombäck B, Carlsson K, Hessel B, Liljeborg A, Procyk R, Åslund N. Native fibrin gel networks observed by 3D microscopy, permeation and turbidity. Biochim Biophys Acta 1989; 997: 96-110
  • 16 Blombäck B, Okada M. Fibrin gel structure and clotting time. Thromb Res 1982; 25: 51-70
  • 17 Signer R, Egli H. Sedimentation von Makromolekylen und Durchströmung der Gelen. Recueil 1950; 69: 45-58
  • 18 Carr Jr ME, Shen LL, Hermans J. Mass-length ratio of fibrin fibers from gel permeation and light scattering. Biopolymers 1977; 16: 1-15
  • 19 Blombäck B, Fatah K, Hessel B, Procyk R. Rate of fibrinogen activation in plasma determines fibrin network structure. Abstract Thromb Haemostas 1991; 65: 904
  • 20 Vermylen C, de Vreker RA, Verstraete M. A rapid enzymatic method for assay of fibrinogen fibrin polymerization time (FPT) test. Clin Chim Acta 1963; 8: 418-424
  • 21 Bergström K, Blombäck B, Kleen G. Studies on the plasma fibrinolytic activity in a case of liver cirrhosis. Acta Med Scand 1963; 8: 418-424
  • 22 Fink PC, Römer M, Haeckel R, Fateh-Moghadam A, Delanghe J, Gressner AM, Dubs RW. Measurement of proteins with the Behring Nephelometer. A multicentre evaluation. J Clin Chem Clin Biochem 1989; 27: 261-276
  • 23 Carlsson K. Lipoprotein fractionation. J Clin Pathol 1973; 5 (suppl 26) 32-37
  • 24 Noble RP. Electrophoretic separation of plasma lipoproteins in agarose gel. J Lipid Res 1968; 9: 693-700
  • 25 Beaumont JL, Carlson LA, Cooper GR, Fejfar Z, Fredrickson DS, Strasser T. Classification of hyperlipidaemias and hyperlipo-proteinaemias. Bull WHO 1970; 43: 891-915
  • 26 Hamsten A, Walldius G, Szamosi A, Dahlén G, de Faire U. Relationship of angiographically defined coronary artery disease to serum lipoproteins and apolipoproteins in young survivors of myocardial infarction. Circulation 1986; 73: 1097-110
  • 27 Snedecor GW, Cochran WG. Statistical Methods. Iowa State University Press; Ames, IA: 1978
  • 28 Okada M, Blombäck B. Calcium and fibrin gel structure. Thromb Res 1983; 29: 269-280
  • 29 Okada M, Blombäck B, Chang M-D, Horowitz B. Fibronectin and fibrin gel structure. J Biol Chem 1985; 260: 1811-1820
  • 30 Blombäck B, Blombäck M, Laurent TC, Pertoft H. Effect of EDTA on fibrinogen. Biochim Biophys Acta 1966; 127: 560-562
  • 31 Okada M, Blombäck B, Block M. Effect of albumin and dextran on fibrin gel structure. Thromb Haemostas 1983; 50: 185-190
  • 32 Blombäck B, Procyk R, Adamsson L, Hessel B. FXIII induced gelation of human fibrinogen – An alternative thiol enhanced, thrombin independent pathway. Thromb Res 1985; 37: 613-628
  • 33 Procyk R, Blombäck B. Factor XIII-induced crosslinking in solutions of fibrinogen and fibronectin. Biochim Biophys Acta 1988; 967: 304-313
  • 34 Procyk R, Adamsson L, Block M, Blombäck B. Factor XIII catalyzed formation of fibrinogen-fibronectin oligomers – A thiol enhanced process. Thromb Res 1985; 40: 833-852
  • 35 Duguid JB. Thrombosis as a factor in the pathogenesis of coronary atherosclerosis. J Pathol Bacteriol 1946; 58: 207-212
  • 36 Woolf N. Thrombosis and atherosclerosis. Br Med Bull 1978; 34: 137-142
  • 37 Smith EB, Walker JL. Soluble fibrin/fibrinogen related antigen in human intima in relation to atherogenesis. In: Fibrinogen-Fibrin Formation and Fibrinolysis. Lane DA, Henschen A, Jasani MK (eds). Walter de Gruyter, Berlin 1986; 4: 363-370
  • 38 Shainoff JR, Valenzuela R, Urbanic DA, DiBello PM, Lucas FV, Graor R. Fibrinogen Aα and γ-chain dimers as potential differential indicators of atherosclerotic and thrombotic vascular disease. Blood Coagulation Fibrinolysis 1990; 1: 499-503
  • 39 Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis: characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 1983; 50: 127-134
  • 40 Singh RN. Progression of coronary atherosclerosis. Clues to pathogenesis from serial coronary arteriography. Br Heart J 1984; 52: 451-461
  • 41 Davies MJ, Thomas AC. Plaque fissuring – the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 1985; 53: 363-373
  • 42 Jonasson L, Holm J, Skalli G, Bondjers G, Hansson GK. Regional accumulation of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986; 6: 131-138