Is Knee Joint Distraction a Viable Treatment Option for Knee OA?—A Literature Review and Meta-Analysis

Tsuneari Takahashi, MD, PhD1,2 Thomas G. Baboolal, PhD1 Jonathan Lamb, MRCS1,3 Thomas W. Hamilton, MRCS4,* Hemant G. Pandit, FRCS, DPhil1,3,4

1 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
2 Department of Orthopedic Surgery, Jichi Medical University, Shimotsuke, Japan
3 Department of Orthopedic Surgery, Chapel Allerton Hospital, Leeds Teaching Hospital NHS Trust, Leeds, United Kingdom
4 Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom

Address for correspondence Tsuneari Takahashi, MD, PhD, 2nd Floor, Chapel Allerton Hospital, Chapeltown Road, Leeds LS7 4SA, United Kingdom (e-mail: tsuneari9@jichi.ac.jp).

Abstract

Knee joint distraction (KJD) is a new application of an established technique to regenerate native cartilage using an external fixator. The purpose of this study is to perform a systematic review and meta-analysis of the literature to determine whether KJD is beneficial for knee osteoarthritis and how results compare with established treatments. Studies assessing the outcomes of KJD were retrieved, with three studies (one cohort and two randomized controlled trials), 62 knees, meeting the inclusion criteria. The primary outcome was functional outcome, assessed using a validated outcome score, at 1 year. Secondary outcomes included pain scores, structural assessment of the joint, and adverse events. KJD is associated with improvements in Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) from baseline to 1 year as well as reductions in pain scores and improvements in structural parameters assessed radiographically and by magnetic resonance imaging. KJD is not associated with decreased knee flexion, but is associated with a high risk of pin site infection. In patients aged 65 years or under at 1 year, no differences in WOMAC or pain scores was detected between patients managed with KJD compared with high tibial osteotomy or total knee arthroplasty. KJD may represent a potential treatment for knee arthritis, though further trials with longer term follow-up are required to establish its efficacy compared with contemporary treatments. This is a Level I (systematic review and meta-analysis) study.

Keywords
► knee osteoarthritis
► knee joint distraction
► total knee arthroplasty
► high tibial osteotomy
► outcomes
► complication

Knee osteoarthritis (OA) is the most common musculoskeletal disease estimated to affect 3.8% of the world’s population.1 Considered a disease of the whole joint, knee OA is characterized by loss of cartilage, bone remodeling, and inflammation. Cumulative joint degeneration eventually leads to substantial loss of function and quality of life, and represents a major cause of global disability.1,2 The burden of OA is set to increase with rising obesity levels and an aging population.1,3 Gold standard treatment for OA of significant severity is joint arthroplasty after initial conservative treatment. Beyond arthroplasty, no other treatment is proven effective in halting or reversing disease.

received
April 5, 2018
accepted after revision
July 23, 2018
published online
August 29, 2018

Copyright © 2019 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel: +1(212) 584-4662. DOI https://doi.org/10.1055/s-0038-1669447. ISSN 1538-8506.
progression. Globally, the prevalence of knee OA peaks at
50 years. 1 However, both patients and surgeons are reluc-
tant to replace joints where the patient is expected to
outlive the lifespan of the prosthesis as there is a greater
risk of revision surgery. 4–6

Consequently, there is an increasing need for alternative
treatments for this younger OA population, not least because
of the increased failure risk 7 but also because in some cases
arthroplasty may result in poor clinical outcomes. 7 Following
injury and osteoarthritis in the ankle, ankle joint distraction
has provided a useful means of reducing pain, improving
function, and increasing radiological joint space. 8 Likewise,
basilar thumb arthritis has been effectively treated with joint
distraction and debridement in small prospective studies. 9
There are a certain risks of infection at pin sites and related
bone infection often observed in any surgical procedure
using external frame and pins or wires; however, such joint
sparing alternatives are useful for patients who wish to
preserve the native joint.

A similar approach has been adopted to treat knee OA
with knee joint distraction (KJD). KJD uses an external fixator
to unload the joint by distracting the tibia and femur. 10 It is
reported that this temporary mechanical unloading allows
natural intrinsic repair processes to regenerate cartilaginous
tissue evidenced by a sustained clinical bene-
fit and increase
in joint width space. 11 With KJD being a joint sparing
procedure aimed at postponing a first prosthesis, successful
clinical adoption could significantly improve patients’ qual-
ity of life and thus reduce the long-term health care costs
associated with knee OA. The aims of this systematic review are to identify and
evaluate the current evidence for the use of KJD focusing on
clinical and radiological outcomes. This review will also help
to identify gaps in our understanding and so inform future
clinical and scientific studies.

Materials and Methods

Inclusion and Exclusion Criteria

Eligible studies included those involving patients aged
18 years or older with knee arthritis that compared surgical
KJD against other surgical procedures for knee arthritis. There were no exclusion-based study designs or duration of
distraction.

Information Sources and Search Strategy

Electronic databases (MEDLINE [Ovid], EMBASE [Ovid], Web of
Science [ISI Web of Knowledge]) were searched from their
inception until 25 February 2018 for studies meeting the
inclusion criteria. Searches were tailored to individual databases
with the search strategy for MEDLINE shown in Appendix A.

In addition, reference lists of reviews and retrieved articles
were assessed for further studies as were registers of
controlled clinical trials (metaRegister of controlled trials
[mRCT] [www.controlled-trials.com/mrct], clinicaltrials.gov
[www.clinicaltrials.gov]) and the World Health Organization
[WHO] International Clinical Trials Registry Platform [ICTRP]
[http://apps.who.int/trialsearch/]). No restrictions were
applied based on the publication status. Where necessary
authors were contacted for additional information.

Studies were assessed independently in duplicate for eligibility and data from eligible studies extracted indepen-
dently in duplicate into an electronic database (T.T., T.W.H.).
A risk of bias assessment was performed on included studies.

Outcome Measures Assessed

To assess the outcome of KJD, improvements from baseline to
1 year post intervention were assessed. To compare KJD with
other surgical interventions, outcomes at 1 year post inter-
vention were assessed.

The primary outcome assessed was functional outcome,
assessed using a validated outcome score, at 1 year following
surgical intervention. Secondary outcomes included pain
scores, assessed using a validated pain score, structural
assessment of the joint, both radiographic and with magnetic
resonance imaging (MRI), and assessment of adverse events.
All secondary outcomes were assessed at 1 year following
surgical intervention.

Statistical Analysis

Heterogeneity of included studies was assessed using the I 2
statistic and in the event of substantial heterogeneity
(I 2 > 85%), a meta-analysis was not performed. As a
degree of variability was expected due to the subjectivity
of the outcome measures, a random-effects model was used
in all cases. For continuous data, the mean difference (MD)
was calculated along with 95% confidence intervals (95% CI),
calculated using the inverse variance method. For
dichotomous data, the risk difference along with 95% CI
was calculated using the Cochran-Mantel-Haenszel method.
Data analysis was performed using standard statistical
techniques as described in the Cochrane Handbook for
Systematic Reviews of Interventions, using Review Man-
ager-5.3 (The Nordic Cochrane Centre, The Cochrane Colla-
boration, 2014).

Results

Three studies consisting of one cohort study and two ran-
domized controlled trials were identified as meeting inclusion
criteria 11–13 (Fig. 1). The results of the cohort study were
reported across three papers with relevant data extracted
where reported. 11,14,15 Included studies are outlined in
 Table 1 with an assessment of risk of bias presented in
 Fig. 2. All studies were considered at high risk of perform-
ance and detection bias as it was not possible to blind
surgeons, participants, or outcome assessors as to the treat-
ment received. Attrition and reporting bias were assessed as
low risk with no loss to follow-up at 1 year reported. As all
three studies originate from the same research group, it was
considered that this presented an unclear risk of bias.

Two studies were excluded as they reported the results of
arthroscopic microfracture in combination with KJD and it
was the authors opinion that, as microfracture is already an
established treatment for cartilaginous loss, it would not be
possible to delineate any treatment effect seen. 16,17 The first
of these studies by Deie et al reported the outcomes of six knees managed with KJD and microfracture and found at a mean 3-year follow-up significant improvements in Japanese Orthopaedic Association Score, VAS pain score, and radiographic joint space width. The second, by Aly et al, reported the outcomes of 61 knees, 19 managed with KJD, joint debridement and microfracture and 42 managed with joint debridement and microfracture without KJD. The group managed with KJD, joint debridement, and microfracture had significantly improved pain, walking capacity, stair climbing, and radiographic joint space width compared with baseline, whereas those treated with joint debridement and microfracture without KJD did not.

Table 1. List of included studies

<table>
<thead>
<tr>
<th>Author</th>
<th>Procedure</th>
<th>Age (years)</th>
<th>Male gender</th>
<th>BMI (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>van der Woude et al 2017</td>
<td>KJD vs. OA</td>
<td>48.5 vs. 51.2</td>
<td>55% vs. 45%</td>
<td>29.6 vs. 31.1</td>
</tr>
<tr>
<td>van der Woude et al 2017</td>
<td>KJD vs. TKA</td>
<td>54.6 vs. 56.2</td>
<td>45% vs. 36%</td>
<td>27.5 vs. 27.2</td>
</tr>
<tr>
<td>van der Woude et al 2017</td>
<td>KJD vs. HTO</td>
<td>51.1 vs. 49.4</td>
<td>73% vs. 60%</td>
<td>27.5 vs. 27.2</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; HTO, high tibial osteotomy; KJD, knee joint distraction; OA, osteoarthritis; TKA, total knee arthroplasty.
significant improvement in WOMAC scores, MD 28.7 points ($p < 0.001; 95\%\ CI, 22.6–34.8$), between baseline and 1 year post surgery observed (Fig. 3). Improvements were seen across all subdomains of WOMAC: pain ($p \leq 0.001$; MD 29.3 points 95\%\ CI, 21.9–36.5), stiffness ($p \leq 0.001$; MD 19.5 points 95\%\ CI, 8.4–30.6), and function ($p \leq 0.001$; MD 29.5 points 95\%\ CI, 23.6–35.4).

Knee injury and Osteoarthritis Outcome Score (KOOS), Intermittent and Constant Osteoarthritis Pain (ICOAP) score, EuroQol 5 Dimensions (EQ-5D), and Short form (SF)-36 were reported in two studies, 42 patients. Significant improvements between baseline and 1 year scores were observed for KOOS ($p < 0.001, \text{MD} 23.2 \text{points } 95\%\ CI, 15.4–31.1$), ICOAP ($p < 0.001, \text{MD} 26.7 \text{points } 95\%\ CI, 17.0–36.4$), and EQ-5D ($p < 0.001, \text{MD} 0.15 \text{points } 95\%\ CI, 0.06–0.23$) and all subdomains. Significant improvements between baseline and 1 year SF-36 physical component score ($p = 0.009, \text{MD} 7.8 \text{points } 95\%\ CI, 1.9–13.7$), but not mental component score ($p = 0.41, \text{MD} – 1.5 \text{points } 95\%\ CI, –5.0–2.0$) were observed.

Secondary Outcomes

Pain score, assessed using a pain visual analog score (VAS) 0 to 100 where 0 was equivalent to no pain, was reported in all three studies, 62 patients. Patients managed with KJD reported significant improvements in pain VAS of 33.3 points ($p < 0.001; 95\%\ CI, 19.7–46.9$) from baseline to 1 year post surgery (Fig. 4).

Structural assessment of the joint was performed radiographically in all three studies, 59 patients, and by MRI in one study, 20 patients. Between baseline and 1 year following KJD, the radiographic minimum joint space width increased by 0.8 mm ($p < 0.001; 95\%\ CI, 0.5–1.0$; Fig. 5) and mean joint space width increased by 0.8 mm ($p = 0.003; 95\%\ CI, 0.3–1.3$). On MRI, the mean cartilage thickness over the total

Fig. 2 Risk of bias summary.

Fig. 3 Forest plot of improvement from baseline to 1-year Western Ontario and McMaster Universities Osteoarthritis Index scores in knees managed with knee joint distraction. CI, confidence interval; SD, standard deviation.
subchondral bone area increased from 1.4 (standard deviation, SD 0.3) to 1.6 mm (SD 0.3; \(p = 0.03 \)) on the tibia and from 1.0 (SD 0.4) to 1.4 mm (SD 0.3; \(p < 0.001 \)) on the femur. The percentage of denuded subchondral bone decreased from 16.7 (SD 17.2) to 4.8% (SD 8.3; \(p = 0.006 \)) on the tibia and from 27.3 (SD 25.6) to 4.2% (SD 10.2; \(p < 0.001 \)) on the femur.

Adverse Events

Knee flexion was reported in two studies, 42 patients. No change in knee flexion between baseline and 1 year following KJD was observed (\(p = 0.18 \); MD 2.4° 95% CI, −1.1–5.9) from baseline to 1 year post surgery. Across all three studies, 62 patients, one patient was reported as requiring manipulation under anesthetic (MUA) at 17 days following frame removal for stiffness.

Across all three studies, 62 patients, 42 patients developed single or multiple pin site infection requiring antibiotics. Overall, the risk of developing pin site infection was 69% (95% CI, 51–87) (−Fig. 6). The risk of developing pin site infection requiring oral antibiotics was 57% (95% CI, 33–82). The risk of developing pin site infection requiring intravenous antibiotics was 10% (95% CI, 1–18). Overall two patients required surgical irrigation and debridement with one developing osteomyelitis 3 weeks following frame removal.

Additional adverse events reported with the use of KJD included pulmonary emboli (2 of 20 patients [10%] in one study), postoperative foot drop managed with ankle foot orthosis (1 patient), failure of the KJD device (1 patient), and breaking of a bone pin during application (1 patient).

Outcomes of KJD Compared with Other Treatments

Primary Outcome

Two randomized controlled trials assessed the outcomes of KJD against other treatments for arthritis, one against high
tibial osteotomy (HTO) and one against total knee arthroplasty (TKA). Both studies were conducted in patients aged 65 years and under. At 1 year, no difference in total WOMAC score, or across subdomains, was seen between knees managed with KJD and those managed with HTO ($p = 0.25$; MD -5.0 points, 95% CI, -13.5–3.5) or TKA ($p = 0.53$; MD -3.0 points, 95% CI, -12.5–6.5) (Fig. 7). At 1 year, no difference was seen in KOOS, ICOAP, EQ-5D or SF-36 between treatment groups.

Pain score, assessed using a pain VAS 0 to 100, was reported in both studies. At 1 year, no difference in pain VAS was seen between knees managed with KJD and those managed with HTO ($p = 0.17$; MD 9.0 points, 95% CI, -21.8–3.8) or TKA ($p = 0.13$; MD 10.0 points, 95% CI, -23.0–3.0) (Fig. 8).

Adverse Events

At 1 year, no difference in knee flexion was seen between knees managed with KJD and those managed with HTO ($p = 0.05$; MD 4.0 degrees, 95% CI, -0.1–8.1) or TKA ($p = 0.07$; MD 5.0 degrees, 95% CI, -3.0–10.3). No difference in the rate of MUA was seen between KJD and HTO ($p = 0.40$; risk difference (RD) 0.05 95% CI, -0.1–0.2). A higher rate of MUA was seen with TKA compared with KJD ($p = 0.04$; RD 0.14 95% CI, 0–0.3).

The risk of developing infection requiring antibiotics was significantly higher following KJD compared with both HTO ($p < 0.01$; RD 0.5 95% CI, 0.3–0.8) and TKA ($p < 0.01$; RD 0.6 95% CI, 0.4–0.8). This is likely to be secondary to associated risks of using pins which provide a communication between the external environment and lower limb bones into which they are placed.

Discussion

The main findings of this systematic review are that KJD is associated with significant improvements in functional scores, pain scores, and radiographic measures of cartilage thickness at 1 year postoperatively, and in patients aged 65 years or younger have comparable functional outcomes to HTO and TKA. The main limitation of KJD is the occurrence of pin-tract infection that was reported in 69% (95% CI, 51–87) of patients and was significantly higher than that seen in HTO or TKA. At 1 year, no difference in knee flexion, compared with baseline flexion and flexion 1 year following HTO and TKA, was seen. While MUA following KJD has been
reported (one case across three studies, 62 patients), the rate of MUA was found to be significantly lower than the rate observed following TKA.

Compared with older patients, in young patients managed with arthroplasty, the risk of implant failure and subsequent revision burden is high and any intervention that can postpone or reduce the need for the index procedure in this group, and other groups at risk of poor outcomes, is worth considering. This review has found that KJD appears to be a potential alternative treatment option in managing knee OA, and in patients aged 65 years or younger, the results appear to be as good as HTO and TKA at 1 year. While these results are promising, the high rate of pin site infection following KJD is a concern because both HTO and TKA can give lower rate of postoperative infection. Despite in the majority of these cases, resolution of infection was achieved with oral antibiotics. In a few very instances, osteomyelitis has been reported, and surgeons may well have concerns about performing arthroplasty in these cases should KJD fail. However, Wiezant et al. described the safety to perform TKA following KJD and concluded that it appears safe to treat patients several years following KJD with a TKA.

The mechanism by which KJD works is unclear. In the clinical studies of KJD, increased radiographic JSW and coverage of denuded bone assessed by MRI were reported. Biomarker analysis has reported that following KJD a decrease in the collagen type II breakdown marker is observed coupled with an increase in the collagen type II synthesis marker. While these findings would suggest that KJD changes the intra-articular environment to one that favors cartilage repair. It is likely that the conflicting results obtained in animal experiments are due to a variety of reasons such as differences in experimental setup, type of surrogate endpoints used to assess cartilage repair, and limited follow-up. Some studies have shown promising results with evidence of bone and cartilage repair, while others have failed to demonstrate any advantage with KJD, with some even reporting adverse effect on the cartilage integrity. It is clear from these conflicting observations that more work is needed to establish indeed when and how joint distraction works and in which scenarios.

Alongside the mechanism of action of KJD, there are several other areas of uncertainty around this treatment. In the present studies, static distraction was applied using two 45 kg springs to permit some degree of joint loading. Whether this represent the optimum distraction force, and whether a hinged distractor, which has been demonstrated to be superior for ankle OA, still needs to be assessed. Additionally, the patient population most likely to benefit from distraction and optimum duration of distraction remains to be defined. Early reports suggest that men with more severe arthritis are most likely to respond to treatment, and 6 weeks distraction provides equivalent clinical outcomes to 8 weeks distraction; however, these findings are based on limited data, and appropriately powered trials comparing the outcomes of KJD to other treatments for knee OA are required. Finally, further information on the long-term efficacy of KJD is required. Current data suggest that at 5 years the functional outcomes and structural assessments of joint remain improved compared with baseline, approximately 70% of the patients treated still have their own knee instead of the initially planned joint prosthesis. At 9 years post distraction, still 50% of the patients continue to manage with their own knee and thereby the need for an artificial joint is avoided. Remarkably, mostly women seem to drop out and opt for further intervention, although there is no clear explanation for this gender difference.

The strength of this systematic review is that it is a comprehensive assessment of the efficacy of KJD for the treatment of knee arthritis. The weakness of this review is that it is limited by the data available, with only three studies available for inclusion, with all originating from the same research group.

This study has highlighted that KJD may be a valid alternative to HTO and TKA in the treatment of knee arthritis in the young, resulting in improvements in functional and pain as well as evidence of structural improvements within the joint lasting beyond 1 year. However, further work is required to optimize the technique of KJD, define the optimum population for its use as well as develop methods to reduce the risk of pin site infection, the major complication associated with this technique. Ultimately KJD needs to be assessed pragmatically through appropriately powered multicenter studies designed to assess its long-term effectiveness and comparative efficacy against other established treatments for knee OA.

Ethical Approval
This is a systematic review so ethical approval was waived.

Funding
None.

Conflict of interest
None declared.

References
Appendix A MEDLINE (Ovid) Search Strategy

1. Knee joint/
2. distraction.mp. OR arthrodiatasis.mp
3. 1. AND 2.