Semin Liver Dis 2018; 38(04): 379-388
DOI: 10.1055/s-0038-1673621
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Immunomodulatory Effects of Current Targeted Therapies on Hepatocellular Carcinoma: Implication for the Future of Immunotherapy

Yu-Yang Lin*
1   School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
,
Ching-Ting Tan*
2   Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
3   Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
,
Chia-Wei Chen*
,
Da-Liang Ou§
3   Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
4   National Taiwan University Cancer Center, Taipei, Taiwan
,
Ann-Lii Cheng
3   Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
4   National Taiwan University Cancer Center, Taipei, Taiwan
5   Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
,
Chiun Hsu
3   Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
4   National Taiwan University Cancer Center, Taipei, Taiwan
5   Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
6   Center of Precision Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
› Author Affiliations
Further Information

Publication History

Publication Date:
24 October 2018 (online)

Abstract

Multikinase inhibitors with antiangiogenic properties used to be standard therapy for patients with advanced hepatocellular carcinoma (HCC). Recently, several antiangiogenic agents (lenvatinib, cabozantinib, and ramucirumab) have demonstrated antitumor activity for advanced HCC in randomized controlled trials. However, the landscape of drug development for HCC may change dramatically with the advent of immune checkpoint inhibitor therapy, particularly the anti–programmed cell death-1 (anti-PD1) agents. In addition, early-phase clinical trials of combination of anti–PD-1 and antiangiogenic agents have shown very promising anti-tumor activity in patients with advanced HCC. Therefore, the critical research questions at present are whether this combination strategy will be the next generation of standard therapy and which antiangiogenic agents will be the optimal partner for the combination. All of the 4 multikinase inhibitors for HCC (sorafenib, regorafenib, lenvatinib, and cabozantinib) have been reported to have immune modulatory effects. The authors systematically reviewed the pre-clinical evidence of their immune modulatory effects to explore whether these effects were mediated by angiogenesis inhibition or by other “off-target” effects on the tumor microenvironment. Studies of sorafenib comprised the majority (58 of the 71) of the research articles reviewed. Potentially beneficial effects on anti-tumor immunity may result from increased M1 polarization of macrophages and stimulation of CD8 T cell function. On the other hand, high dosage of the kinase inhibitors in pre-clinical models and hypoxia associated with angiogenesis may contribute to immune suppression in the tumor microenvironment. Sorafenib and other multikinase inhibitors may promote anti-tumor immunity through modulation of multiple immune cell types as well as the tumor microenvironment. The optimal immune modulatory dosage should be defined to facilitate design of future combination regimens.

Note

Part of this study has been presented at the 9th Asia Pacific Primary Liver Cancer Expert Meeting. July 6–8, 2018, Seoul, Korea.


* Yu-Yang Lin and Ching-Ting Tan contributed equally to this work.


§ Dr. Da-Liang Ou is a National Taiwan University YongLin Scholar since 2018.


Supplementary Material

 
  • References

  • 1 Hsu C, Cheng AL. Clinical and preclinical perspectives on mechanisms of sorafenib resistance in hepatocellular carcinoma. In: Villanueva A. , ed. Resistance to molecular therapies for hepatocellular carcinoma. Switzerland: Springer; 2017
  • 2 Lencioni R, Kudo M, Ye SL. , et al. GIDEON (Global Investigation of therapeutic DEcisions in hepatocellular carcinoma and Of its treatment with sorafeNib): second interim analysis. Int J Clin Pract 2014; 68 (05) 609-617
  • 3 Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet 2018; 391 (10127): 1301-1314
  • 4 Abou-Alfa GK, Meyer T, Cheng AL. , et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med 2018; 379 (01) 54-63
  • 5 Bruix J, Qin S, Merle P. , et al; RESORCE Investigators. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 389 (10064): 56-66
  • 6 Kudo M, Finn RS, Qin S. , et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 2018; 391 (10126): 1163-1173
  • 7 Zhu AX, Kang YK, Yen CJ. , et al. REACH-2: A randomized, double-blind, placebo-controlled phase 3 study of ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma (HCC) and elevated baseline alpha-fetoprotein (AFP) following first-line sorafenib. J Clin Oncol 2018; 36 (15, suppl): 4003
  • 8 Wilhelm SM, Carter C, Tang L. , et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64 (19) 7099-7109
  • 9 Carlomagno F, Anaganti S, Guida T. , et al. BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst 2006; 98 (05) 326-334
  • 10 Wilhelm SM, Dumas J, Adnane L. , et al. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer 2011; 129 (01) 245-255
  • 11 Tohyama O, Matsui J, Kodama K. , et al. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res 2014; 2014: 638747
  • 12 Yakes FM, Chen J, Tan J. , et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 2011; 10 (12) 2298-2308
  • 13 Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther 2016; 164: 204-225
  • 14 Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 2015; 27 (04) 450-461
  • 15 Callahan MK, Postow MA, Wolchok JD. Targeting T cell co-receptors for cancer therapy. Immunity 2016; 44 (05) 1069-1078
  • 16 Hoos A. Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov 2016; 15 (04) 235-247
  • 17 Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2015; 12 (12) 681-700
  • 18 El-Khoueiry AB, Sangro B, Yau T. , et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017; 389 (10088): 2492-2502
  • 19 Zhu AX, Finn RS, Edeline J. , et al; KEYNOTE-224 investigators. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018; 19 (07) 940-952
  • 20 Folkman J. Angiogenesis: an organizing principle for drug discovery?. Nat Rev Drug Discov 2007; 6 (04) 273-286
  • 21 Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 2014; 26 (05) 605-622
  • 22 Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy?. Angiogenesis 2017; 20 (02) 185-204
  • 23 Kwilas AR, Donahue RN, Tsang KY, Hodge JW. Immune consequences of tyrosine kinase inhibitors that synergize with cancer immunotherapy. Cancer Cell Microenviron 2015; 2 (01) e677
  • 24 Singer EA, Gupta GN, Srinivasan R. Targeted therapeutic strategies for the management of renal cell carcinoma. Curr Opin Oncol 2012; 24 (03) 284-290
  • 25 Nadal R, Mortazavi A, Stein M. , et al. Final results of a phase I study of cabozantinib (cabo) plus nivolumab (nivo) and cabonivo plus ipilimumab (Ipi) in patients (pts) with metastatic urothelial carcinoma (mUC) and other genitourinary (GU) malignancies. Paper presented at: European Society of Medical Oncology (ESMO) 2017
  • 26 Choueiri TK, Larkin J, Oya M. , et al. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, phase 1b trial. Lancet Oncol 2018; 19 (04) 451-460
  • 27 Atkins MB, Plimack ER, Puzanov I. , et al. Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Lancet Oncol 2018; 19 (03) 405-415
  • 28 McDermott DF, Huseni MA, Atkins MB. , et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med 2018; 24 (06) 749-757
  • 29 Lee CH, Makker V, Rasco D, Taylor MH, Stepan DE, Shumaker C. Lenvatinib + pembrolizumab in patients with renal cell carcinoma: Updated results. J Clin Oncol 2018; 36 (suppl): 4560
  • 30 Stein S, Pishvaian MJ, Lee MS. , et al. Safety and clinical activity of 1L atezolizumab + bevacizumab in a phase Ib study in hepatocellular carcinoma (HCC). J Clin Oncol 2018; 36 (15, suppl): 4074
  • 31 Xu JM, Zhang Y, Jia R. , et al. Anti-programmed death-1 antibody SHR-1210 (S) combined with apatinib (A) for advanced hepatocellular carcinoma (HCC), gastric cancer (GC) or esophagogastric junction (EGJ) cancer refractory to standard therapy: a phase 1 trial. J Clin Oncol 2018; 36 (suppl): 4075
  • 32 Ikeda M, Sung MW, Kudo M, Kobayashi M, Baron A, Finn RS. A phase 1b trial of lenvatinib (LEN) plus pembrolizumab (PEM) in patients (pts) with unresectable hepatocellular carcinoma (uHCC). J Clin Oncol 2018; 36 (suppl): 4076
  • 33 Martin del Campo SE, Levine KM, Mundy-Bosse BL. , et al. The raf kinase inhibitor sorafenib inhibits JAK-STAT signal transduction in human immune cells. J Immunol 2015; 195 (05) 1995-2005
  • 34 Chen ML, Yan BS, Lu WC. , et al. Sorafenib relieves cell-intrinsic and cell-extrinsic inhibitions of effector T cells in tumor microenvironment to augment antitumor immunity. Int J Cancer 2014; 134 (02) 319-331
  • 35 Hoff S, Gruenewald S, Roese L. , et al. Immunomodulation by regorafenib alone and in combination with anti PD1 antibody on murine models of colorectal cancer. Paper presented at: Annals of Oncology 2017
  • 36 Tsai AK, Khan AY, Worgo CE, Wang LL, Liang Y, Davila E. A multikinase and DNA-PK inhibitor combination immunomodulates melanomas, suppresses tumor progression, and enhances immunotherapies. Cancer Immunol Res 2017; 5 (09) 790-803
  • 37 Lu X, Horner JW, Paul E. , et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 2017; 543 (7647): 728-732
  • 38 Kwilas AR, Ardiani A, Donahue RN, Aftab DT, Hodge JW. Dual effects of a targeted small-molecule inhibitor (cabozantinib) on immune-mediated killing of tumor cells and immune tumor microenvironment permissiveness when combined with a cancer vaccine. J Transl Med 2014; 12: 294
  • 39 Kato Y, Tabata K, Hori Y, Tachino S, Okamoto K, Matsui J. Effects of lenvatinib on tumor-associated macrophages enhance antitumor activity of PD-1 signal inhibitors. Mol Cancer Ther 2015; 14 (Suppl. 02) A92
  • 40 Kato Y, Bao X, Macgrath S. , et al. Lenvatinib mesilate (LEN) enhanced antitumor activity of a PD-1 blockade agent by potentiating Th1 immune response. Ann Oncol 2016; 27 (06) 2PD . DOI: 10.1093/annonc/mdw362.02
  • 41 Kato Y. Upregulation of memory T cell population and enhancement of Th1 response by lenvatinib potentiate anti-tumor activity of PD-1 signaling blockade: Lenvatinib and PD-1 mAb combination. Proc Am Assoc Cancer Res 2017; Abstract 4614
  • 42 Heindryckx F, Coulon S, Terrie E. , et al. The placental growth factor as a target against hepatocellular carcinoma in a diethylnitrosamine-induced mouse model. J Hepatol 2013; 58 (02) 319-328
  • 43 Sprinzl MF, Reisinger F, Puschnik A. , et al. Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. Hepatology 2013; 57 (06) 2358-2368
  • 44 Wei X, Tang C, Lu X. , et al. MiR-101 targets DUSP1 to regulate the TGF-β secretion in sorafenib inhibits macrophage-induced growth of hepatocarcinoma. Oncotarget 2015; 6 (21) 18389-18405
  • 45 Lam W, Jiang Z, Guan F. , et al. PHY906(KD018), an adjuvant based on a 1800-year-old Chinese medicine, enhanced the anti-tumor activity of Sorafenib by changing the tumor microenvironment. Sci Rep 2015; 5: 9384
  • 46 Sprinzl MF, Puschnik A, Schlitter AM. , et al. Sorafenib inhibits macrophage-induced growth of hepatoma cells by interference with insulin-like growth factor-1 secretion. J Hepatol 2015; 62 (04) 863-870
  • 47 Farsaci B, Donahue RN, Coplin MA. , et al. Immune consequences of decreasing tumor vasculature with antiangiogenic tyrosine kinase inhibitors in combination with therapeutic vaccines. Cancer Immunol Res 2014; 2 (11) 1090-1102
  • 48 Chen Y, Liu YC, Sung YC. , et al. Overcoming sorafenib evasion in hepatocellular carcinoma using CXCR4-targeted nanoparticles to co-deliver MEK-inhibitors. Sci Rep 2017; 7: 44123
  • 49 Yao W, Ba Q, Li X. , et al. A natural CCR2 antagonist relieves tumor-associated macrophage-mediated immunosuppression to produce a therapeutic effect for liver cancer. EBioMedicine 2017; 22: 58-67
  • 50 Liu JY, Chiang T, Liu CH. , et al. Delivery of siRNA using CXCR4-targeted nanoparticles modulates tumor microenvironment and achieves a potent antitumor response in liver cancer. Mol Ther 2015; 23 (11) 1772-1782
  • 51 Zhang W, Zhu XD, Sun HC. , et al. Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res 2010; 16 (13) 3420-3430
  • 52 Zhou SL, Zhou ZJ, Hu ZQ. , et al. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology 2016; 150 (07) 1646-1658.e17
  • 53 Chen Y, Ramjiawan RR, Reiberger T. , et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 2015; 61 (05) 1591-1602
  • 54 Du R, Lu KV, Petritsch C. , et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 2008; 13 (03) 206-220
  • 55 Zajac E, Schweighofer B, Kupriyanova TA. , et al. Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9. Blood 2013; 122 (25) 4054-4067
  • 56 Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014; 6: 13
  • 57 Nahrendorf M, Swirski FK. Abandoning M1/M2 for a network model of macrophage function. Circ Res 2016; 119 (03) 414-417
  • 58 Bronte V, Murray PJ. Understanding local macrophage phenotypes in disease: modulating macrophage function to treat cancer. Nat Med 2015; 21 (02) 117-119
  • 59 Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010; 11 (10) 889-896
  • 60 Franklin RA, Liao W, Sarkar A. , et al. The cellular and molecular origin of tumor-associated macrophages. Science 2014; 344 (6186): 921-925
  • 61 Colegio OR, Chu NQ, Szabo AL. , et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513 (7519): 559-563
  • 62 Chittezhath M, Dhillon MK, Lim JY. , et al. Molecular profiling reveals a tumor-promoting phenotype of monocytes and macrophages in human cancer progression. Immunity 2014; 41 (05) 815-829
  • 63 Elpek KG, Cremasco V, Shen H. , et al. The tumor microenvironment shapes lineage, transcriptional, and functional diversity of infiltrating myeloid cells. Cancer Immunol Res 2014; 2 (07) 655-667
  • 64 Murray PJ, Allen JE, Biswas SK. , et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014; 41 (01) 14-20
  • 65 Huang Y, Yuan J, Righi E. , et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci U S A 2012; 109 (43) 17561-17566
  • 66 Nakazawa Y, Kawano S, Matsui J. , et al. Multitargeting strategy using lenvatinib and golvatinib: maximizing anti-angiogenesis activity in a preclinical cancer model. Cancer Sci 2015; 106 (02) 201-207
  • 67 Kato Y, Tabata K, Hori Y, Tachino S, Okamoto K, Matsui J. Abstract A92: effects of lenvatinib on tumor-associated macrophages enhance antitumor activity of PD-1 signal inhibitors. Mol Cancer Ther 2015; 14 (12) (Suppl. 02) A92
  • 68 Kato Y. Abstract 4614: upregulation of memory T cell population and enhancement of Th1 response by lenvatinib potentiate antitumor activity of PD-1 signaling blockade. Cancer Res 2017; 77 (13, Suppl): 4614
  • 69 Makker V. Biomarker results and preclinical rationale for combination lenvatinib and pembrolizumab in advanced endometrial carcinoma. J Clin Oncol 2018; 36: abstr 5597
  • 70 Tripathi M, Nandana S, Billet S. , et al. Modulation of cabozantinib efficacy by the prostate tumor microenvironment. Oncotarget 2017; 8 (50) 87891-87902
  • 71 Tripathi M, Nandana S, Billet S, Posadas EM, Chung LWK, Bhowmick NA. Abstract LB-274: Microenvironment mediates the efficacy of Cabozantinib in prostate cancer. Cancer Res 2016; 76 (14, Suppl): LB-274
  • 72 Mathew NR, Baumgartner F, Braun L. , et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med 2018; 24 (03) 282-291
  • 73 Romero AI, Chaput N, Poirier-Colame V. , et al. Regulation of CD4(+)NKG2D(+) Th1 cells in patients with metastatic melanoma treated with sorafenib: role of IL-15Rα and NKG2D triggering. Cancer Res 2014; 74 (01) 68-80
  • 74 Sunay MM, Foote JB, Leatherman JM. , et al. Sorafenib combined with HER-2 targeted vaccination can promote effective T cell immunity in vivo. Int Immunopharmacol 2017; 46: 112-123
  • 75 Chuang H-Y, Chang Y-F, Liu R-S, Hwang J-J. Serial low doses of sorafenib enhance therapeutic efficacy of adoptive T cell therapy in a murine model by improving tumor microenvironment. PLoS One 2014; 9 (10) e109992
  • 76 Chang CJ, Yang YH, Chiu CJ. , et al. Targeting tumor-infiltrating Ly6G+ myeloid cells improves sorafenib efficacy in mouse orthotopic hepatocellular carcinoma. Int J Cancer 2018; 142 (09) 1878-1889
  • 77 Zhao W, Gu YH, Song R, Qu BQ, Xu Q. Sorafenib inhibits activation of human peripheral blood T cells by targeting LCK phosphorylation. Leukemia 2008; 22 (06) 1226-1233
  • 78 Cao M, Xu Y, Youn JI. , et al. Kinase inhibitor Sorafenib modulates immunosuppressive cell populations in a murine liver cancer model. Lab Invest 2011; 91 (04) 598-608
  • 79 Coffelt SB, Chen YY, Muthana M. , et al. Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. J Immunol 2011; 186 (07) 4183-4190
  • 80 McNamee EN, Korns Johnson D, Homann D, Clambey ET. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol Res 2013; 55 (1-3): 58-70
  • 81 Lohmeyer J, Nerreter T, Dotterweich J, Einsele H, Seggewiss-Bernhardt R. Sorafenib paradoxically activates the RAS/RAF/ERK pathway in polyclonal human NK cells during expansion and thereby enhances effector functions in a dose- and time-dependent manner. Clin Exp Immunol 2018; 193 (01) 64-72
  • 82 Stehle F, Schulz K, Fahldieck C. , et al. Reduced immunosuppressive properties of axitinib in comparison with other tyrosine kinase inhibitors. J Biol Chem 2013; 288 (23) 16334-16347
  • 83 Zhang QB, Sun HC, Zhang KZ. , et al. Suppression of natural killer cells by sorafenib contributes to prometastatic effects in hepatocellular carcinoma. PLoS One 2013; 8 (02) e55945
  • 84 Krusch M, Salih J, Schlicke M. , et al. The kinase inhibitors sunitinib and sorafenib differentially affect NK cell antitumor reactivity in vitro. J Immunol 2009; 183 (12) 8286-8294
  • 85 Heine A, Schilling J, Grünwald B. , et al. The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib. Cancer Immunol Immunother 2016; 65 (03) 273-282
  • 86 Chen Y, Huang Y, Reiberger T. , et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology 2014; 59 (04) 1435-1447
  • 87 Patnaik A, Swanson K, Helenius K. , et al. Cabozantinib eradicates de novo castrate-resistant PTEN/p53 deficient murine prostate cancer via activation of neutrophil-mediated anti-tumor innate immunity. Cancer Discov 2017; 7 (07) 750-765
  • 88 Patnaik A, Swanson KD, Csizmadia E. , et al. Cabozantinib eradicates advanced murine prostate cancer by activating antitumor innate immunity. Cancer Discov 2017; 7 (07) 750-765
  • 89 Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol 2017; 18 (12) e731-e741
  • 90 Salama AK, Moschos SJ. Next steps in immuno-oncology: enhancing antitumor effects through appropriate patient selection and rationally designed combination strategies. Ann Oncol 2017; 28 (01) 57-74
  • 91 Flynn MJ, Larkin JMG. Novel combination strategies for enhancing efficacy of immune checkpoint inhibitors in the treatment of metastatic solid malignancies. Expert Opin Pharmacother 2017; 18 (14) 1477-1490
  • 92 Larkin J, Chiarion-Sileni V, Gonzalez R. , et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373 (01) 23-34
  • 93 Rizvi NA, Hellmann MD, Brahmer JR. , et al. Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol 2016; 34 (25) 2969-2979
  • 94 Langer CJ, Gadgeel SM, Borghaei H. , et al; KEYNOTE-021 investigators. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 2016; 17 (11) 1497-1508
  • 95 Hellmann MD, Rizvi NA, Goldman JW. , et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol 2017; 18 (01) 31-41
  • 96 Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol 2018; 15 (05) 325-340
  • 97 Jung K, Heishi T, Khan OF. , et al. Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. J Clin Invest 2017; 127 (08) 3039-3051
  • 98 Peterson TE, Kirkpatrick ND, Huang Y. , et al. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc Natl Acad Sci U S A 2016; 113 (16) 4470-4475
  • 99 Jung K, Heishi T, Incio J. , et al. Targeting CXCR4-dependent immunosuppressive Ly6Clow monocytes improves antiangiogenic therapy in colorectal cancer. Proc Natl Acad Sci U S A 2017; 114 (39) 10455-10460
  • 100 Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med 2013; 368 (14) 1365-1366
  • 101 Amin A, Plimack ER, Infante J, Ernstoff B, Rini BI. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with sunitinib or pazopanib in patients (pts) with metastatic renal cell carcinoma (mRCC) [abstract]. J Clin Oncol 2014; 32: 5010
  • 102 Hoff S, Gruenewald S, Roese L, Zopf D. Immunomodulation by regorafenib alone and in combination with anti-PD-1 antibody on murine models of colorectal cancer. Ann Oncol 2017; 28 (Suppl. 05) 1198P
  • 103 Jardim DL, de Melo Gagliato D, Giles FJ, Kurzrock R. Analysis of drug development paradigms for immune checkpoint inhibitors. Clin Cancer Res 2018; 24 (08) 1785-1794
  • 104 Jardim DL, Groves ES, Breitfeld PP, Kurzrock R. Factors associated with failure of oncology drugs in late-stage clinical development: A systematic review. Cancer Treat Rev 2017; 52: 12-21
  • 105 Chen J, Li G, Meng H. , et al. Upregulation of B7-H1 expression is associated with macrophage infiltration in hepatocellular carcinomas. Cancer Immunol Immunother 2012; 61 (01) 101-108
  • 106 Sica A, Invernizzi P, Mantovani A. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology 2014; 59 (05) 2034-2042
  • 107 Tian L, Goldstein A, Wang H. , et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 2017; 544 (7649): 250-254
  • 108 Messenheimer DJ, Jensen SM, Afentoulis ME. , et al. Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clin Cancer Res 2017; 23 (20) 6165-6177
  • 109 Shrimali RK, Ahmad S, Verma V. , et al. Concurrent PD-1 blockade negates the effects of OX40 agonist antibody in combination immunotherapy through inducing T-cell apoptosis. Cancer Immunol Res 2017; 5 (09) 755-766
  • 110 Thommen DS, Schumacher TN. T cell dysfunction in cancer. Cancer Cell 2018; 33 (04) 547-562