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Abstract Haemostasis encompasses a set of strictly regulated actions, such as vasoconstriction,
platelet activation and blood coagulation. Endothelial cells play a crucial role in all of
these processes and are an integral part of the vascular response to injury resulting in
thrombus formation. Healthy endothelium expresses mediators to prevent platelet
activation, including prostacyclin and nitric oxide, and to inhibit coagulation, such as
thrombomodulin or RNase1. Upon activation, endothelial cells expose von Willebrand
factor, integrins and other receptors to interact with activated platelets, erythrocytes
and coagulation factors, respectively, resulting in blood clot formation. The endothelial
cell response to cytokines and growth factors released from activated platelets and
immune cells abundantly present in arterial and venous thrombi also plays an
important role for thrombus resolution, whereas failure to completely resolve thrombi
may initiate fibrotic remodelling and chronic vascular occlusion both in the arterial and
venous tree. Therefore, endothelial cells are increasingly recognized as potential target
to prevent thrombotic events and to accelerate thrombus resolution. Here, we discuss
recent publications from our group in the context of other studies on the role of the
endothelium during acute and chronic thrombotic events.

Zusammenfassung Die Hämostase umfasst eine Reihe von streng regulierten Abläufen wie Vasokonstrik-
tion, Thrombozytenaktivierung und Blutgerinnung. Endothelzellen spielen eine ent-
scheidende Rolle in all diesen Prozessen und sind ein integraler Bestandteil der
vaskulären Antwort auf Verletzungen, die zur Thrombusbildung führen. Gesundes
Endothel exprimiert Mediatoren zur Verhinderung der Thrombozytenaktivierung
einschließlich Prostacyclin und Stickoxid und zur Hemmung der Gerinnung, wie
Thrombomodulin oder RNase1. Nach der Aktivierung exponieren Endothelzellen den
von Willebrand-Faktor, Integrine und andere Rezeptoren, um mit aktivierten Throm-
bozyten, Erythrozyten bzw. Gerinnungsfaktoren zu interagieren, was zur Bildung von
Blutgerinnseln führt. Die Endothelzellenantwort auf Cytokine undWachstumsfaktoren,
die von aktivierten Blutplättchen und Immunzellen in arteriellen und venösen
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Introduction

Endothelial cells cover the surface of all blood vessels. They
provide an important barrier between the cellular and
noncellular components of the circulating blood and the
interstitium; regulate tissue perfusion and supply with
oxygen and nutrients; help in the recruitment of inflamma-
tory cells and control blood pressure in conjunction with
underlying smooth muscle cells and pericytes endothelial
cells. The fundamental role of endothelial dysfunction for
cardiovascular disease, including hypertension, coronary
artery disease, chronic heart failure and peripheral artery
disease, has been established in numerous clinical and
experimental studies. Despite the large body of existing
knowledge, new facets and functions of the endothelium,
one of the largest ‘organs’ of our body, continue to emerge.
Moreover, changes in risk factor exposure (such as increasing
age, noise or air pollution) and novel therapeutic options
(such as direct thrombin or factor Xa inhibitors) have yielded
additional insights into the regulation and response of
endothelial cells. In this short review article, we will briefly
summarize the existing knowledge on the role of endothelial
cells in acute and chronic thrombosis (or thrombus forma-
tion and thrombus resolution) and also highlight recent
findings obtained, among others, through interactive and
interdisciplinary translational research efforts at the Center
for Thrombosis and Hemostasis (CTH) at the University
Medical Center in Mainz, Germany.

Endothelial Control of Platelet Activation
and Coagulation

Healthy endothelial cells express severalmolecules that coun-
teract platelet activation and prevent coagulation and throm-
bus formation tomaintain unobstructed bloodflowand tissue
perfusion. The control of platelet adhesion and activation is
achieved by the expression of negatively charged heparan
sulfate proteoglycans on the endothelial cell surface1 as well
as by ectonucleotidases (such as CD39) catalysing the conver-
sion of the platelet agonist adenosine diphosphate (ADP)
released from activated platelets and red blood cells into
adenosine.2 Interaction of endothelial cells with platelets or
stimulationwith thrombin liberates prostacyclin I2 (PGI2) and
prostaglandin E2 (PGE2), two potent platelet antagonists.3 The
release of nitric oxide (NO) produced by endothelial nitric

oxide synthase (eNOS) represents another means by which
endothelial cells contribute to the prevention of platelet
activation and adhesion.4,5 The parallel relaxation of vascular
smooth muscle cells and vasodilation in response to NO may
reduce the degree of thrombotic vessel obstruction and limit
the extent of ischaemic tissue damage.6 Ribonuclease 1 (RN-
ase1)—released from specialized intracellular storage gran-
ules, the so-called Weibel–Palade (WP) bodies, upon
stimulation of endothelial cells with thrombin, tumour necro-
sis factor (TNF)-α or vascular endothelial growth factor
(VEGF),7–9 degrades extracellular procoagulant RNA, and ad-
ministration of RNase1 has been shown to delay arterial
thrombus formation and blood vessel occlusion in mice.10

The endothelium also plays a primary role in the preven-
tion of thrombin generation. Endogenous heparan sulphates
in the endothelial glycocalyx bind the potent thrombin
inhibitor antithrombin (AT).11 Endothelial cells also express
specific receptors that control coagulation by binding throm-
bin and converting its coagulant into anticoagulant proper-
ties. Thrombomodulin, constitutively expressed on
endothelial cells, in conjunctionwith endothelial cell protein
C receptor (EPCR) accelerates the thrombin-catalysed activa-
tion of protein C to generate activated protein C (APC), a
circulating serine protease with potent anticoagulant activi-
ty via irreversible inactivation of factors Va and VIIIa.12,13

Loss or inactivation of endothelial thrombomodulin, for
example, in response to TNFα,14 predisposes to coagulation
activation and thrombosis. In this regard, plasma levels of
soluble thrombomodulin were found to be elevated in
patients with ST segment elevation myocardial infarction
(STEMI) developing cardiogenic shock.15

Endothelial cells also express tissue factor pathway inhib-
itor (TFPI), which binds and inhibits the factor VIIa/tissue
factor (TF) complex, thus preventing initiation of the extrin-
sic coagulation pathway.16 Mice with endothelial-specific
deletion of TFPI exhibit accelerated thrombus formation in
response to ferric chloride-induced arterial injury,17 and
lower plasma TFPI levels have been reported in patients
with STEMI,18 ischaemic stroke19 or deep vein thrombosis.20

The aforementionedproperties ofendothelial cells describe
functions of healthy endothelium and are typically lost or
shifted to a prothrombotic phenotype under the influence of
cardiovascular risk factors, inflammatory or procoagulant
stimuli, a phenomenon described as ‘endothelial dysfunction’
(see later).

Thromben freigesetzt werden, spielt ebenfalls eine wichtige Rolle bei der Thrombus-
auflösung, während eine unvollständige Auflösung von Thromben fibrotische Umbau-
prozesse und einen chronischen Gefäßverschluss sowohl im arteriellen als auch im
venösen Bereich auslösen kann. Daher werden Endothelzellen zunehmend als potenz-
ielles Ziel zur Vorbeugung thrombotischer Ereignisse und zur Beschleunigung der
Thrombusauflösung erkannt. Hier diskutieren wir aktuelle Publikationen aus unserer
Gruppe im Zusammenhangmit anderen Studien zur Rolle des Endothels bei akuten und
chronischen thrombotischen Ereignissen.

Schlüsselwörter

► arteriell
► endotheliale

Dysfunktion
► Thrombose
► Thrombusauflösung
► venös
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Endothelial Heterogeneity Affecting Factors
Controlling Haemostasis and Thrombosis

Genetic and phenotypic differences known to exist between
endothelial cells fromdifferent vascular beds and organs21,22

include surface receptors involved in haemostasis and coag-
ulation control. For example, both thrombomodulin and
EPCR are poorly expressed on brain microvascular endothe-
lial cells,23,24 although the implications of this observation
are not clear. Tissue plasminogen activator (tPA) is strongly
expressed on vein endothelium, whichmay contribute to the
higher propensity of venous thrombi to embolize.6 CD36 or
platelet glycoprotein IV, one of several receptors for colla-
gen,25 is found primarily on microvascular endothelial
cells.26 A short schematic overview of factors controlling
thrombosis and haemostasis differentially expressed in en-
dothelial cells lining arteries, veins and capillaries is given
in►Fig. 1. The location-specific heterogeneity of endothelial
cells mayalso contribute to the known differences in arterial,
venous and microvascular thrombus composition, besides
differences in hemodynamic forces between vascular beds.

Both arterial and venous endothelial cells express recep-
tors cleaved and activated by the serine protein thrombin,
protease activated receptor (PAR), which exist as four mem-
bers, PAR-1 to PAR-4.27 The procoagulant response of the
endothelium to thrombin is largely mediated by PAR-1.28

PAR-2 is expressed to a lesser extent on endothelial cells and,
like PAR-1, responds to thrombin and activated coagulation
factors,29 and also to trypsin and tryptase.30 PAR-3 and PAR-4
are not expressed on the endothelium in significant amounts.
Activation of PAR-1 on endothelial cells by thrombin is
responsible for the production of NO and PGI2 and induces
the release of von Willebrand factor (vWF) and tPA fromWP
bodies.31 Thrombin-induced activation of PAR-1 and PAR-2
mediates the expression of TF in cultivated endothelial
cells.32Of note, activation by the EPCR/APC complex switches
endothelial PAR-1 signalling toward the transduction of
anticoagulant and cytoprotective effects, including antia-
poptotic, anti-inflammatory and proangiogenic activities.33

Therefore, the usefulness of the so-called ‘parmodulins’ to
safely activate APC-like cytoprotective signalling in endothe-
lial cells is currently examined in several studies.34

Fig. 1 Heterogeneity of endothelial cells with regard to factors involved in thrombosis and haemostasis. Schematic drawing showing
endothelial expression of factors involved in preventing platelet activation and blood coagulation according to the presence of shear stress
(artery vs. vein) and the endothelial bed (adapted from references 21–27).
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Endothelial Integrity: An Indirect Means to
Prevent Thrombosis

The integrity of the endothelial layer per se may influence the
thrombotic response. An increase in vascular permeability
(such as during inflammation) may lead to a shift of fluids,
albumin and molecules with a similar molecular weight,
including AT and protein C, from the intravascular compart-
ment into the extravascular space and thus reduce the amount
of natural anticoagulants while at the same time increasing
blood viscosity. Following thrombosis, reconstitution of endo-
thelial integrity and coverage of prothrombotic extracellular
matrix proteins present in the vessel wall and exposed after
injury or atherosclerotic plaque rupture represents another
important function of this cell type. Factors modulating endo-
thelial proliferation and migration, including VEGF or trans-
forming growth factor-β (TGFβ), are released from activated
platelets.35 Platelet-derived VEGF is bioactive, accumulates in
thrombi36 and may act as a local proangiogenic agent enhanc-
ing recanalization.37 Conversely, neutralization of VEGF or
inhibition of VEGF signalling has been shown to impair venous
thrombus revascularization and, consequently, resolution.38,39

Platelet granule secretionmay thus accelerate reconstitution of
endothelial integrity following injury, which induces endothe-
lial and smooth muscle cell quiescence,40 but also prevents
further activation of the clotting cascade and thrombus propa-
gation by creating a barrier between blood and the thrombus
surface.41 Enhancing the regenerative capacities of the endo-
thelium may thus constitute an indirect antithrombotic strat-
egy. In this regard, several studies including that of our group
have examined the potential of endothelial progenitor cells to
enhance revascularization after arterial injury42,43 and to

promote venous thrombus resolution.44 On the other hand,
we could recently show that TGFβ released from activated
platelets does not alter the thrombotic response to arterial
injury, but impairs lesion re-endothelialization and promotes
neointima formation,45 in line with its role as a negative
regulator of endothelial cell proliferation.46 Moreover, TGFβ
is a potent profibrotic factor and may convert endothelial cells
into myofibroblasts.47 On the other hand, ‘unleashing’ angio-
genic growth factor signalling, for example, by inhibition of
protein tyrosine phosphatase-1B (PTP1B) in endothelial cells,
may result in unrestricted proliferation and premature cell
senescence, as recently shown by us in mice with conditional
genetic deletion of PTP1B in endothelial cells and after phar-
macological inhibition of PTP1B in human endothelial cells.48

Endothelial cells are present during thrombus resolution, both
in thevenousand thearterial system,andcanbedetectedusing
CD31 immunostaining (►Fig. 2). Interestingly, CD31 (or
PECAM1) was shown to actively participate in venous throm-
bus resolution, as shown in mice with genetic PECAM1 defi-
ciency and humans after acute deep vein thrombosis.49

Role of the Endothelium to Prevent Blood
Loss after Vessel Injury

Endothelial cells are not only equipped to ensure continuous,
undisturbed blood flow by preventing platelet and leucocyte
adhesion, but are also part of the first line of defence
following vascular injury. For example, stimulation of endo-
thelial cells with thrombin, histamine or bradykinin results
in the acute release of endothelin-1,50 which triggers rapid
vasoconstriction in smoothmuscle cells to prevent blood loss
after vascular injury.WithinWPbodies, endothelial cells also

Fig. 2 Endothelial cells in venous and arterial thrombus resolution. Typical immunohistochemical images showing CD31-positive endothelial
cells (red signal) at different time points following experimental induction of venous (A; IVC ligation) and arterial (B; ferric chloride injury)
thrombosis. Zoom-in pictures are shown in the left corner of the picture. Scale bars represent 100 µm.
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store preformed haemostatic proteins, such as vWF, a large
multimeric adhesion glycoprotein which stabilizes factor
VIII, and binds to GPIb and GPIIbIIIa integrin receptors
expressed on platelets or to extracellular matrix proteins
such as collagen.51 By linking endothelial cells with activated
platelets and collagen fibrils exposed after tissue damage,
vWF plays a major role in haemostasis controlled by the
endothelium, and experimental studies have demonstrated
the importance of vWF-mediated platelet adhesion for ve-
nous thrombus formation.52 Following the lag phase of
platelet-dependent adhesion and aggregation for wound
healing to prevent blood loss, ADAMTS13 (which stands
for disintegrin-like and metalloprotease with thrombospon-
din type 1 repeats-13), a vWF-specific metalloproteinase
synthetized in and bound to the surface of endothelial cells,53

cleaves ultra-large vWF multimers to generate less throm-
bogenic fragments.54 Deficiency (genetic or acquired) in
ADAMTS13 results in excessive platelet aggregation and
disseminated deposition of vWF- and platelet-rich thrombi
and has been discovered as pathomechanism underlying
thrombotic thrombocytopenic purpura.55,56 Moreover, re-
duced plasmaADAMTS13 activity and increased plasmavWF
are risk factors for acute myocardial infarction57 and ischae-
mic stroke,58 among others. ADAMTS18, another endothelial
cell-derived member of this family, is cleaved and activated
by thrombin to disintegrate and oxidatively fragment plate-
let aggregates.59 Thus, endothelial cells assist in primary clot
formation after injury, but also are equipped with ‘tools’ to
remove these aggregates and to restore tissue perfusion.

Endothelial Dysfunction and Aberrant Clot
Formation

Endothelial dysfunction, defined as a shift of the properties of
healthy endothelial cells toward a proadhesive, proinflamma-
toryandprothromboticphenotype, canbe inducedbyavariety
of conditions, including hyperlipidaemia, diabetes and smok-
ing, and often is accompanied by an abnormally increased risk
for thrombosis, but also has been implicated in impaired
thrombus resolution. Activated, dysfunctional endothelial
cells may contribute to the pathogenesis of thrombosis by
altering the expression of pro- and antithrombotic factors. For
example, stimulation of endothelial cells with proinflamma-
tory cytokines, such as TNFα and interleukin-1, upregulates
the production of TF and vWF, while attenuating the expres-
sion of thrombomodulin, NO and PGI2.60Of note, themajority
of studies reportingTFexpression inactivatedendothelial cells
has been performed in cultured cells, whereas the endothelial
expression of TF in vivo is controversial.61

Endothelial dysfunction may also be induced by hypoxia
identified as a strong prothrombotic stimulus, in particular for
venous thrombosis. For example, hypoxia associated with
venous stasis has been shown to activate TF expression in
monocytes62 or to upregulate the antifibrinolytic factor plas-
minogen activator inhibitor-1 (PAI-1) in cultivated endothelial
cells,63 which may contribute to impaired thrombus resolu-
tion. Hypoxiawas also found to promote endothelial release of
vWF and platelet binding.64 Although per se not sufficient to

cause thrombosis, hypoxia was shown to promote the initia-
tion and propagation of venous thrombosis in mice.65

Activated endothelial cells may also contribute to thrombo-
sis via increased expression of adhesion receptors resulting in
the enhanced recruitment of immune and inflammatory cells,
and mice deficient in P- and/or E-selectin exhibited smaller
thrombi after experimental deep vein thrombosis.66 Inflam-
matory cells actively participate in the thrombotic response,
among others by the expression of tissue factor and the release
of neutrophil extracellular traps or serine proteases (such as
elastase or cathepsin G) capable of activating thrombin recep-
tors (as recently reviewed by Iba and Levy67). Previous studies
have demonstrated the sequential invasion of neutrophils and
monocytes to developing murine venous thrombi,68 later
followed by the appearance of endothelial cells and myofibro-
blasts.69 In our own studies, we have shown that chronological
stages of thrombus resolution observed in mouse venous
thrombus can also be observed in PEA (pulmonary endarterec-
tomy) samples from patients with chronic thromboembolic
pulmonary hypertension (CTEPH; ►Fig. 3). Furthermore, nu-
merous hypoxic, hypoxia-inducible factor (HIF)-1α andHIF2α-
positive cells were detected in bothmouse and human throm-
boticmaterial.70Others reported increasing levels of theHIF2α
during venous thrombus resolution associated with nucleated
cell-dense regions and areas of neovascularization within
thrombi.71 Regarding adaptive immunity, we could recently
show inmice that CD4þ and CD8þ T cells rapidly infiltrate the
thrombus and vein wall following experimental deep vein
thrombosis and remain in the tissue throughout thrombus
resolution.72 We also found, among other, that release of
interferon-γ by activated effector-memory T cells determines
neutrophil and monocyte recruitment as well as neovascula-
rization and, ultimately, thrombus resolution. A role for inter-
feron-γ in delaying thrombus recanalization has also been
suggested by others.73

Novel Endothelial-Derived Mediators of
Thrombosis

Experimental evidence obtained in established mouse mod-
els of arterial and venous thrombosis74,75 has revealed
additional endothelial-derived mediators with possible
roles in thrombosis and prothrombotic disorders. For ex-
ample, overexpression of tumour-suppressor protein 53
(p53), an ubiquitously expressed transcription factor in-
volved in cell cycle control and apoptosis, was found to
promote a prothrombotic endothelial cell phenotype in
vitro via downregulation of Krüppel-like factor-2 and sub-
sequent alterations in eNOS, thrombomodulin and PAI-1
expression.76 Our study in mice shows the importance of
p53 for the risk of thrombosis in vivo, especially in states of
endothelial p53 upregulation, such as in increased age.77 In
this study, we could show that aging in mice was associated
with p53 overexpression and apoptosis in endothelial cells
lining the inferior vena cava (IVC). Moreover, aged mice
developed more frequent and larger venous thrombi after
being subjected to subtotal IVC ligation, whereas aged mice
with endothelial-specific p53 deletion were protected from
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venous thrombosis. Previous studies examining the effects
of age on venous thrombosis also reported a larger throm-
bus mass in aged mice, and elevated vein wall inflamma-
tion, and increased circulating PAI-1 and procoagulant
microparticle levels were suggested as prothrombotic stim-
uli.78 Others found larger venous thrombi in aged mice to be
associated with increased vein wall P-selectin expression
and higher soluble P-selectin.79 These and additional
changes of endothelial cells with age that may underlie
the prothrombotic tendency in the elderly were recently
reviewed by us.80

Further analyses of primary murine endothelial cells
revealed that p53 overexpression was associated with ele-
vated expression of heparanase. The endoglycosidase hep-
aranase is released from intracellular storage granules in
response to various activation signals, including thrombin,
and involved in the degradation of heparan sulphates inhib-
iting coagulation pathway enzymes.81 The heparanase-me-
diated degradation of proteoglycans in the endothelial
glycocalyx may also facilitate the interaction of activated
platelets with the endothelium. Others found shortened
times to arterial thrombosis following vascular injury and
increased in-stent thrombosis in transgenic mice overex-
pressing human heparanase.82 Importantly, we could show
that inhibiting heparanase activity using TFPI-2 peptides
restored the thrombotic phenotype of adult mice.77 TFPI2

peptides were generated by our cooperation partners Dr.
Yona Nadir and Dr. Benjamin Brenner at the Rambam Health
Care Campus and Technion Israel Institute of Technology in
Haifa, Israel, who had previously validated their functionali-
ty to antagonize heparanase activity and venous thrombus
formation.83,84 In addition to TFPI, which inhibits factor Xa
and factor VIIa complexed to TF, its homologue TFPI2 antag-
onizes a variety of serine proteases involved in blood coagu-
lation including factor VIIa/TF, factor Xa, factor XIa, plasmin,
trypsin and kallikrein.85

Novel Cellular Interaction Partners with
Endothelial Cells during Thrombosis and
Haemostasis

Important functions of endothelial cells are mediated in a
paracrine manner: a classical example is NO produced and
released by endothelial NO synthase, which activates soluble
guanylate cyclase, cyclic GMP and protein kinase G signalling
in neighbouring smooth muscle cells to control contraction
and, ultimately, blood pressure.86 Via NO-induced signalling
activation in platelets, endothelial cells may also control
platelet activation and contribute to the antithrombotic
effects of healthy endothelium. Interestingly, first reports
suggest that smooth muscle cells may also play a role in
thrombosis.87Whether other paracrine factors released from

Fig. 3 Hypoxia during thrombofibrotic remodelling. Representative composite pictures of MassonTrichrome (MTC) and HIF1α antibody-stained
cross-sections through mouse thrombus (A) or human pulmonary endarterectomy (PEA) specimens (B) suggesting a sequence of events from
thrombosis to fibrosis and the presence of hypoxia during this process. Scale bars represent 100 µm.
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(dysfunctional) endothelial cells may indirectly affect
thrombus formation by acting on smooth muscle cells needs
to be explored in further studies.

In addition to the interaction with platelets, the main
cellular mediators of haemostasis, clinical and experimental
evidence also suggests that endothelial cells interact with
erythrocytes, a circulating cell type involved primarily in
oxygen transport, but possibly also thrombosis. Although
mature erythrocytes normally do not interact with healthy
endothelial cells, structurally or metabolically altered eryth-
rocytes such as from patients with sickle cell disease88 or
malaria,89 and also diabetes,90 were shown to adhere to
endothelial cells. Crystal structure modelling and cell-based
adhesion assays revealed important interactions of the Land-
steiner-Wiener blood group glycoprotein intercellular adhe-
sion molecule-4 (ICAM-4) on erythrocyte membranes with
αν-integrins highly expressed on endothelial cells.91 ICAM-4
may also bridge the interaction of erythrocytes with the
fibrinogen receptor αIIbβ3 expressed on platelets92 or with
αLβ2 andαMβ2 integrins expressedon immunecells,93notonly
suggesting a mechanism how erythrocytes may contribute to
vasoocclusive events in sickle cell disease94 but possibly also
other prothrombotic conditions. In this regard, it was shown
that calcium-loaded erythrocytes can adhere to endothelial
cells via ultra-large vWF multimer strings released from
thrombin-activated endothelium.95 Interestingly, splenecto-
my is one of the risk factors for venous thrombosis96 and its
chronic sequelae, such as CTEPH97 and removal of the spleen
(i.e., the organ filtering damaged and dysfunctional red blood
cells from the circulation), was experimentally shown to be
associated with larger and more persistent venous thrombi.98

Endothelial Contribution to Thrombus
Resolution

Endothelial cells express factors, including tPA, that convert
plasminogen to plasmin and thus activate fibrinolysis. En-
dothelial cells also express urokinase plasminogen activator
which is more important during pericellular proteolysis, cell
migration and wound healing including the formation of a
neointima after experimental arterial thrombosis.99 Of note,
metabolic and replicative stress are associated with in-
creased expression of the antifibrinolytic factor PAI-1 in
endothelial cells,100 which may contribute to the increased
risk of thromboembolic events in patients with diabetes101

and older individuals.102

In addition to fibrinolysis, endothelial cells are critically
involved in the restoration of vascular patency by promoting
angiogenesis and the formation of new blood vessels within
thrombi. Vascular obstruction and blood flow stasis result in
local hypoxia andupregulationofHIF1α andVEGF, as shown in
mice after experimental IVC ligation and blood flow restric-
tion.103 Inhibition of HIF1α degradation by administration of
the prolyl hydroxylase domain inhibitor L-mimosine in-
creased the expression of angiogenicmediators and accelerat-
ed thrombus revascularization and resolution.104 The
importance of VEGF for thrombus recanalization was docu-
mented in several studies,105 whereas other proangiogenic

factors, including basic fibroblast growth factor, were found
not to be effective with regard to acceleration of thrombus
resolution, at least not in rats.106 Deletion of VEGFR2, the
predominant endothelial cell receptor to promote VEGF
effects, alsodelayedmurinethrombusresolution.38 Inaddition
to its role in the regulationof thrombogenesis bycleaving vWF,
ADAMTS13 may modulate angiogenesis via upregulation of
VEGF expression and signalling, as shown in cultivated human
endothelial cells.107 Mice deficient for PECAM-1 (CD31), an
adhesion glycoprotein expressed on endothelial cells and
platelets, exhibited larger andmorepersistent venous thrombi
characterized by fewer vessels and less inflammatory cells.49

Moreover, in patients with acute symptomatic deep vein
thrombosis, serum levels of soluble PECAM-1, presumably
truncated fromtheendothelial surface,were foundto correlate
with delayed thrombus resolution. Activated endothelial cells
may also promote new vessel formation through release of TF-
richmicroparticles and paracrine stimulation of neighbouring
endothelial cells.108 This phenomenon has so far been ob-
served inmodels of ischaemia-induced angiogenesis, butmay
also be of relevance during thrombus revascularization.

The abundantly present fibrin matrix provides an excel-
lent scaffold for infiltrating immune and other cells during
vascular tissue repair.109 Fibrin is also a potent activator of
endothelial cells that triggers the secretion ofWP bodies and
the release of growth factors.110 In this regard, endothelial
cells store, and upon stimulation with thrombin, histamine
and hypoxia release angiopoietin-2 (Ang-2), the antagonist
for both Ang-1 and Tie2 involved in the negative regulation of
angiogenesis and promotion of vascular leakage and inflam-
mation.111 Knockdown of Ang-2 has been shown to block
thrombin-induced monocyte adhesion and ICAM-1 expres-
sion.112 Interestingly, a recent study involving network
analysis of the proteomics identified elevated Ang-2 plasma
levels as sensitive early marker and predictor of mortality in
patients with disseminated intravascular coagulation,
whereas endotoxemic mice with reduced Tie2 signalling
exhibited excessive fibrin accumulation.113

The reciprocal interaction between activated endothelial
cells and platelets may further stimulate angiogenesis,
thrombus neovascularization and tissue repair by angiogenic
growth factors secreted from platelets, including VEGF.114

Moreover, activated platelets secrete factors that enhance
the interaction of endothelial cells with immune and inflam-
matory cells, such as RANTES or SDF1α, which may potenti-
ate tissue repair. On the other hand, the interaction of factors
released from activated platelets, such as TGFβ, with recep-
tors expressed on endothelial cells may also result in their
phenotypic conversion to mesenchymal cells (the so-called
endothelial-to-mesenchymal transition;47) and contribute
to the fibrotic organization of thrombus material. In this
regard, we observed signs of activated TGFβ signalling in PEA
specimens from patients with CTEPH (Bochenek ML (PhD)
et al; 2018). Although the exact molecular mechanisms that
cause the excessive pulmonary artery remodelling and de-
velopment of thrombofibrosis are presently unknown,
CTEPH presumably develops in response to unresolved
thromboembolic material within pulmonary arteries.
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Antithrombotic Therapeutic Strategies
Targeting the Endothelium and Vice Versa

The aforementioned findings demonstrate that the endothe-
lium is an essential component of the blood coagulation
system and necessary to maintain normal haemostasis,
whereas endothelial cell activation or injury may result in
platelet activation, thrombosis and inflammation. Vice versa,
factors released during platelet activation or generated dur-
ing coagulationmay act on endothelial cells and change their
phenotype. Regarding therapeutic implications, current
antithrombotic treatment regimens, including direct throm-
bin or factor Xa inhibitors, do not directly focus on endothe-
lial dysfunction, but rather on the prevention of its
consequences such as platelet aggregation or activation of
the coagulation cascade. On the other hand, preventing the
release of growth factors from activated platelets and/or the
build-up of fibrinwill also affect the phenotype and function
of the endothelium and influence its properties during
thrombus resolution and chronic wound healing processes,
such as occurring in CTEPH. Pharmacological approaches to
treat the prothrombotic complications of endothelial dys-
function include, but are not limited to, available or already
used drugs with known endothelial-protective effects, such
as angiotensin-converting enzyme inhibitors, angiotensin
AT1 receptor blockers, β-blockers, calcium channel blockers,
antioxidants, endothelial NO synthase enhancers, phospho-
diesterase 5 inhibitors, or statins, which may directly or
indirectly improve endothelial properties involved in the
prevention of platelet aggregation and thrombus formation,
and also fibrinolysis.115 Although still at the experimental
stage, we and others could establish the efficacy of potential
novel therapeutic strategies, such as TFPI2 peptides, for their
potential to limit the extent of acute venous thrombosis in
mice.77,83,84

Concluding Remarks and Outlook

Endothelial cells are an essential component of the blood
coagulation system and their integrity and functionality is
critical to maintain haemostasis and to prevent platelet acti-
vation and thrombosis. In addition to affecting the three
components of haemostasis, as outlined in Virchow’s triad of
arterial and venous thrombus formation, the endothelium is
crucial also for the chronic vascular response to a thrombotic
event by regulation of angiogenesis, inflammation and tissue
repair. Future studieswill have to focusmore on the reciprocal
interaction of endothelial cells with coagulation factors and
other vascular cell types, not only in blood but also in other
haematopoietic and non-haematopoietic compartments.
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