Hamostaseologie 2019; 39(02): 180-187
DOI: 10.1055/s-0038-1676130
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Thromboinflammation and Vascular Dysfunction

Susanne Karbach
1   Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University, Mainz, Germany
2   Center for Cardiology – Cardiology I, University Medical Center, Johannes Gutenberg University, Mainz, Germany
3   German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, University Medical Center, Johannes Gutenberg University, Mainz, Germany
,
Jérémy Lagrange
1   Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University, Mainz, Germany
,
Philip Wenzel
1   Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University, Mainz, Germany
2   Center for Cardiology – Cardiology I, University Medical Center, Johannes Gutenberg University, Mainz, Germany
3   German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, University Medical Center, Johannes Gutenberg University, Mainz, Germany
› Author Affiliations
Funding This work was supported by the German Ministry for Education and Research (BMBF 01EO1503), the German Research Foundation (DFG KA-4035/1–1 and WE 4361/7–1), the Center for Translational Vascular Biology at the University Medical Center Mainz and the Boehringer Ingelheim Foundation.
Further Information

Publication History

02 July 2018

09 October 2018

Publication Date:
04 December 2018 (online)

Abstract

Thromboinflammation and vascular dysfunction are inseparably combined with the innate and the adaptive immune response. While the role of this interplay has gained considerable attention in the arena of atherosclerosis/atherothrombosis and in deep vein thrombosis, its role in other forms of vascular disease and risk factors is currently emerging. In this brief review, we will focus on thromboinflammation with regard to cytokine signalling as well as on the novel role of a vascular coagulation-inflammatory circuit in arterial hypertension.

Zusammenfassung

Thrombo-Inflammation und vaskuläre Dysfunktion sind untrennbar mit dem angeborenen und dem erworbenen Immunsystem verbunden. Dieses Zusammenspiel wurde im Rahmen der Atherosklerose / Atherothrombose und der tiefen Venenthrombose bereits ausführlich untersucht. Das Zusammenspiel zwischen Inflammation und der Gerinnungskaskade rückt für das Verständnis der Entstehung der vaskulären Dysfunktion immer mehr in den Mittelpunkt des Interesses. In diesem Übersichtsartikel stellen wir das Thema Thrombo-Inflammation dar, auch und besonders in Hinblick auf Zytokin-Signalwege. Außerdem erläutern wir die neue Rolle eines Gefäß-Gerinnungs-Inflammations-Kreislaufs bei der Entstehung des arteriellen Hypertonus.

 
  • References

  • 1 Loeffen R, Spronk HM, ten Cate H. The impact of blood coagulability on atherosclerosis and cardiovascular disease. J Thromb Haemost 2012; 10 (07) 1207-1216
  • 2 Ten Cate H, Hemker HC. Thrombin generation and atherothrombosis: what does the evidence indicate?. J Am Heart Assoc 2016; 5 (08) 5
  • 3 Kalz J, ten Cate H, Spronk HM. Thrombin generation and atherosclerosis. J Thromb Thrombolysis 2014; 37 (01) 45-55
  • 4 Eikelboom JW, Connolly SJ, Bosch J. , et al; COMPASS Investigators. Rivaroxaban with or without aspirin in stable cardiovascular disease. N Engl J Med 2017; 377 (14) 1319-1330
  • 5 Prandoni P. Venous and arterial thrombosis: two aspects of the same disease?. Clin Epidemiol 2009; 1: 1-6
  • 6 von Brühl ML, Stark K, Steinhart A. , et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 7 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45
  • 8 Kossmann S, Lagrange J, Jäckel S. , et al. Platelet-localized FXI promotes a vascular coagulation-inflammatory circuit in arterial hypertension. Sci Transl Med 2017; 9 (375) 9
  • 9 Gomibuchi H, Okazaki M, Iwai S, Kumai T, Kobayashi S, Oguchi K. Development of hyperfibrinogenemia in spontaneously hypertensive and hyperlipidemic rats: a potentially useful animal model as a complication of hypertension and hyperlipidemia. Exp Anim 2007; 56 (01) 1-10
  • 10 Gisterå A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol 2017; 13 (06) 368-380
  • 11 ten Cate H. Tissue factor-driven thrombin generation and inflammation in atherosclerosis. Thromb Res 2012; 129 (Suppl. 02) S38-S40
  • 12 Lozano R, Naghavi M, Foreman K. , et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380 (9859): 2095-2128
  • 13 Borissoff JI, Spronk HM, ten Cate H. The hemostatic system as a modulator of atherosclerosis. N Engl J Med 2011; 364 (18) 1746-1760
  • 14 Weber C. Platelets and chemokines in atherosclerosis: partners in crime. Circ Res 2005; 96 (06) 612-616
  • 15 Li J, Kim K, Barazia A, Tseng A, Cho J. Platelet-neutrophil interactions under thromboinflammatory conditions. Cell Mol Life Sci 2015; 72 (14) 2627-2643
  • 16 Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med 2008; 359 (09) 938-949
  • 17 Toschi V, Gallo R, Lettino M. , et al. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 1997; 95 (03) 594-599
  • 18 Owens III AP, Mackman N. Role of tissue factor in atherothrombosis. Curr Atheroscler Rep 2012; 14 (05) 394-401
  • 19 Tilley RE, Pedersen B, Pawlinski R. , et al. Atherosclerosis in mice is not affected by a reduction in tissue factor expression. Arterioscler Thromb Vasc Biol 2006; 26 (03) 555-562
  • 20 Borensztajn K, Peppelenbosch MP, Spek CA. Factor Xa: at the crossroads between coagulation and signaling in physiology and disease. Trends Mol Med 2008; 14 (10) 429-440
  • 21 Nieman MT. Protease-activated receptors in hemostasis. Blood 2016; 128 (02) 169-177
  • 22 Kahn ML, Diacovo TG, Bainton DF, Lanza F, Trejo J, Coughlin SR. Glycoprotein V-deficient platelets have undiminished thrombin responsiveness and do not exhibit a Bernard-Soulier phenotype. Blood 1999; 94 (12) 4112-4121
  • 23 Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 1999; 103 (06) 879-887
  • 24 O'Brien PJ, Prevost N, Molino M. , et al. Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J Biol Chem 2000; 275 (18) 13502-13509
  • 25 Bae JS, Rezaie AR. Protease activated receptor 1 (PAR-1) activation by thrombin is protective in human pulmonary artery endothelial cells if endothelial protein C receptor is occupied by its natural ligand. Thromb Haemost 2008; 100 (01) 101-109
  • 26 Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991; 64 (06) 1057-1068
  • 27 Nakanishi-Matsui M, Zheng YW, Sulciner DJ, Weiss EJ, Ludeman MJ, Coughlin SR. PAR3 is a cofactor for PAR4 activation by thrombin. Nature 2000; 404 (6778): 609-613
  • 28 Borissoff JI, Spronk HM, Heeneman S, ten Cate H. Is thrombin a key player in the ‘coagulation-atherogenesis’ maze?. Cardiovasc Res 2009; 82 (03) 392-403
  • 29 De Candia E. Mechanisms of platelet activation by thrombin: a short history. Thromb Res 2012; 129 (03) 250-256
  • 30 Tokunou T, Ichiki T, Takeda K. , et al. Thrombin induces interleukin-6 expression through the cAMP response element in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2001; 21 (11) 1759-1763
  • 31 Lehoux S, Lemarié CA, Esposito B, Lijnen HR, Tedgui A. Pressure-induced matrix metalloproteinase-9 contributes to early hypertensive remodeling. Circulation 2004; 109 (08) 1041-1047
  • 32 Zucker S, Conner C, DiMassmo BI. , et al. Thrombin induces the activation of progelatinase A in vascular endothelial cells. Physiologic regulation of angiogenesis. J Biol Chem 1995; 270 (40) 23730-23738
  • 33 Chen D, Dorling A. Critical roles for thrombin in acute and chronic inflammation. J Thromb Haemost 2009; 7 (Suppl. 01) 122-126
  • 34 Madamanchi NR, Li S, Patterson C, Runge MS. Thrombin regulates vascular smooth muscle cell growth and heat shock proteins via the JAK-STAT pathway. J Biol Chem 2001; 276 (22) 18915-18924
  • 35 Weisel JW, Litvinov RI. Mechanisms of fibrin polymerization and clinical implications. Blood 2013; 121 (10) 1712-1719
  • 36 Fogari R, Zoppi A, Marasi G, Vanasia A, Villa G. Associations between plasma fibrinogen levels and cardiovascular risk factors in hypertensive men. J Cardiovasc Risk 1994; 1 (04) 341-345
  • 37 Lu PP, Liu JT, Liu N, Guo F, Ji YY, Pang X. Pro-inflammatory effect of fibrinogen and FDP on vascular smooth muscle cells by IL-6, TNF-α and iNOS. Life Sci 2011; 88 (19-20): 839-845
  • 38 Renné T, Schmaier AH, Nickel KF, Blombäck M, Maas C. In vivo roles of factor XII. Blood 2012; 120 (22) 4296-4303
  • 39 Weidmann H, Heikaus L, Long AT, Naudin C, Schlüter H, Renné T. The plasma contact system, a protease cascade at the nexus of inflammation, coagulation and immunity. Biochim Biophys Acta Mol Cell Res 2017; 1864 (11 Pt B): 2118-2127
  • 40 Stocker TJ, Ishikawa-Ankerhold H, Massberg S, Schulz C. Small but mighty: platelets as central effectors of host defense. Thromb Haemost 2017; 117 (04) 651-661
  • 41 Pircher J, Czermak T, Ehrlich A. , et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun 2018; 9 (01) 1523
  • 42 Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res 2018; 122 (02) 337-351
  • 43 Luther N, Shahneh F, Brähler M. , et al. Innate effector-memory t-cell activation regulates post-thrombotic vein wall inflammation and thrombus resolution. Circ Res 2016; 119 (12) 1286-1295
  • 44 Schönfelder T, Brandt M, Kossmann S. , et al. Lack of T-bet reduces monocytic interleukin-12 formation and accelerates thrombus resolution in deep vein thrombosis. Sci Rep 2018; 8 (01) 3013
  • 45 Kimball AS, Obi AT, Diaz JA, Henke PK. The emerging role of nets in venous thrombosis and immunothrombosis. Front Immunol 2016; 7: 236
  • 46 Kambas K, Mitroulis I, Ritis K. The emerging role of neutrophils in thrombosis-the journey of TF through NETs. Front Immunol 2012; 3: 385
  • 47 Vazquez-Garza E, Jerjes-Sanchez C, Navarrete A, Joya-Harrison J, Rodriguez D. Venous thromboembolism: thrombosis, inflammation, and immunothrombosis for clinicians. J Thromb Thrombolysis 2017; 44 (03) 377-385
  • 48 Libby P, Simon DI. Inflammation and thrombosis: the clot thickens. Circulation 2001; 103 (13) 1718-1720
  • 49 Simon DI, Chen Z, Xu H. , et al. Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 2000; 192 (02) 193-204
  • 50 Ostrovsky L, King AJ, Bond S. , et al. A juxtacrine mechanism for neutrophil adhesion on platelets involves platelet-activating factor and a selectin-dependent activation process. Blood 1998; 91 (08) 3028-3036
  • 51 Wang Y, Sakuma M, Chen Z. , et al. Leukocyte engagement of platelet glycoprotein Ibalpha via the integrin Mac-1 is critical for the biological response to vascular injury. Circulation 2005; 112 (19) 2993-3000
  • 52 Furman MI, Benoit SE, Barnard MR. , et al. Increased platelet reactivity and circulating monocyte-platelet aggregates in patients with stable coronary artery disease. J Am Coll Cardiol 1998; 31 (02) 352-358
  • 53 Ridker PM, Everett BM, Thuren T. , et al; CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377 (12) 1119-1131
  • 54 Libby P, Ordovas JM, Auger KR, Robbins AH, Birinyi LK, Dinarello CA. Endotoxin and tumor necrosis factor induce interleukin-1 gene expression in adult human vascular endothelial cells. Am J Pathol 1986; 124 (02) 179-185
  • 55 Libby P, Ordovas JM, Birinyi LK, Auger KR, Dinarello CA. Inducible interleukin-1 gene expression in human vascular smooth muscle cells. J Clin Invest 1986; 78 (06) 1432-1438
  • 56 Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011; 117 (14) 3720-3732
  • 57 Sarwar N, Butterworth AS, Freitag DF. , et al; IL6R Genetics Consortium Emerging Risk Factors Collaboration. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 2012; 379 (9822): 1205-1213
  • 58 De Caterina R, D'Ugo E, Libby P. Inflammation and thrombosis - testing the hypothesis with anti-inflammatory drug trials. Thromb Haemost 2016; 116 (06) 1012-1021
  • 59 Yan SL, Russell J, Granger DN. Platelet activation and platelet-leukocyte aggregation elicited in experimental colitis are mediated by interleukin-6. Inflamm Bowel Dis 2014; 20 (02) 353-362
  • 60 Burstein SA, Peng J, Friese P. , et al. Cytokine-induced alteration of platelet and hemostatic function. Stem Cells 1996; 14 (Suppl. 01) 154-162
  • 61 Neumann FJ, Ott I, Marx N. , et al. Effect of human recombinant interleukin-6 and interleukin-8 on monocyte procoagulant activity. Arterioscler Thromb Vasc Biol 1997; 17 (12) 3399-3405
  • 62 Kerr R, Stirling D, Ludlam CA. Interleukin 6 and haemostasis. Br J Haematol 2001; 115 (01) 3-12
  • 63 Mutlu GM, Green D, Bellmeyer A. , et al. Ambient particulate matter accelerates coagulation via an IL-6-dependent pathway. J Clin Invest 2007; 117 (10) 2952-2961
  • 64 Ding P, Zhang S, Yu M. , et al. IL-17A promotes the formation of deep vein thrombosis in a mouse model. Int Immunopharmacol 2018; 57: 132-138
  • 65 Li W, Guo S, Wang S. , et al. Comparison of ticagrelor with clopidogrel in reducing interleukin-17 and myeloperoxidase expression in thrombus and improving postprocedural coronary flow in ST-segment elevation myocardial infarction patients. J Pharm Pharm Sci 2018; 21 (01) 207-216
  • 66 Wantha S, Alard JE, Megens RT. , et al. Neutrophil-derived cathelicidin promotes adhesion of classical monocytes. Circ Res 2013; 112 (05) 792-801
  • 67 Spronk HMH, Padro T, Siland JE. , et al. Atherothrombosis and thromboembolism: position paper from the Second Maastricht Consensus Conference on Thrombosis. Thromb Haemost 2018; 118 (02) 229-250
  • 68 Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med 2018; 215 (01) 21-33
  • 69 Garcia GE. ANG II receptor antagonists as modulators of macrophages polarization. Am J Physiol Renal Physiol 2010; 298 (04) F868-F869
  • 70 Guzik TJ, Hoch NE, Brown KA. , et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 2007; 204 (10) 2449-2460
  • 71 Wenzel P, Knorr M, Kossmann S. , et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation 2011; 124 (12) 1370-1381
  • 72 Madhur MS, Lob HE, McCann LA. , et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 2010; 55 (02) 500-507
  • 73 Hevia D, Araos P, Prado C. , et al. Myeloid cd11c(+) antigen-presenting cells ablation prevents hypertension in response to angiotensin ii plus high-salt diet. Hypertension 2018; 71 (04) 709-718
  • 74 Vinh A, Chen W, Blinder Y. , et al. Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation 2010; 122 (24) 2529-2537
  • 75 Kirabo A, Fontana V, de Faria AP. , et al. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest 2014; 124 (10) 4642-4656
  • 76 Harrison DG, Guzik TJ, Lob HE. , et al. Inflammation, immunity, and hypertension. Hypertension 2011; 57 (02) 132-140
  • 77 Ozawa Y, Kobori H, Suzaki Y, Navar LG. Sustained renal interstitial macrophage infiltration following chronic angiotensin II infusions. Am J Physiol Renal Physiol 2007; 292 (01) F330-F339
  • 78 De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM, Schiffrin EL. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol 2005; 25 (10) 2106-2113
  • 79 Huang L, Nazarova EV, Tan S, Liu Y, Russell DG. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med 2018; 215 (04) 1135-1152
  • 80 Karbach S, Croxford AL, Oelze M. , et al. Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease. Arterioscler Thromb Vasc Biol 2014; 34 (12) 2658-2668
  • 81 Gelfand JM, Azfar RS, Mehta NN. Psoriasis and cardiovascular risk: strength in numbers. J Invest Dermatol 2010; 130 (04) 919-922
  • 82 Vena GA, Vestita M, Cassano N. Psoriasis and cardiovascular disease. Dermatol Ther 2010; 23 (02) 144-151
  • 83 Mehta NN, Yu Y, Saboury B. , et al. Systemic and vascular inflammation in patients with moderate to severe psoriasis as measured by [18F]-fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT): a pilot study. Arch Dermatol 2011; 147 (09) 1031-1039
  • 84 Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity 2011; 34 (02) 149-162
  • 85 Waisman A. To be 17 again--anti-interleukin-17 treatment for psoriasis. N Engl J Med 2012; 366 (13) 1251-1252
  • 86 Saleh MA, Norlander AE, Madhur MS. Inhibition of interleukin 17-a but not interleukin-17f signaling lowers blood pressure and reduces end-organ inflammation in angiotensin II–induced hypertension. JACC Basic Transl Sci 2016; 1 (07) 606-616
  • 87 Bautista LE, Vera LM, Arenas IA, Gamarra G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J Hum Hypertens 2005; 19 (02) 149-154
  • 88 Korn T, Bettelli E, Oukka M, Kuchroo VK. Il-17 and th17 cells. Annu Rev Immunol 2009; 27: 485-517
  • 89 Loperena R, Van Beusecum JP, Itani HA. , et al. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovasc Res 2018; 114 (11) 1547-1563
  • 90 Gailani D, Broze Jr GJ. Factor XI activation in a revised model of blood coagulation. Science 1991; 253 (5022): 909-912
  • 91 Furlan-Freguia C, Marchese P, Gruber A, Ruggeri ZM, Ruf W. P2 × 7 receptor signaling contributes to tissue factor-dependent thrombosis in mice. J Clin Invest 2011; 121 (07) 2932-2944
  • 92 Kanaji T, Russell S, Ware J. Amelioration of the macrothrombocytopenia associated with the murine Bernard-Soulier syndrome. Blood 2002; 100 (06) 2102-2107
  • 93 Büller HR, Bethune C, Bhanot S. , et al; FXI-ASO TKA Investigators. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N Engl J Med 2015; 372 (03) 232-240