Semin Respir Crit Care Med 2018; 39(06): 649-660
DOI: 10.1055/s-0038-1676646
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Linear Endobronchial Ultrasound: What's New?

Tao He
1   Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, David Geffen School of Medicine at UCLA, Los Angeles, California
,
Atul C. Mehta
2   Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
› Author Affiliations
Further Information

Publication History

Publication Date:
14 January 2019 (online)

Abstract

Since its advent more than a decade ago, real-time linear endobronchial ultrasound (EBUS) guided transbronchial needle aspiration has revolutionized the diagnosis and staging of nonsmall cell lung cancer (NSCLC), and has become the standard of care with widespread acceptance. It is also extensively used to diagnose other disease entities such as malignancy besides NSCLC, benign diseases, or infectious processes. Ancillary studies have shown its superior safety profile and cost-effectiveness. In recent years, linear EBUS has been expanding its clinical applications owing to the emerging new tools such as the 19-gauge (19G) needle and miniforceps. Meanwhile, with several ground-breaking discoveries in lung cancer treatment over the past few years, linear EBUS has found its way to fit into this scheme as a safe and effective diagnostic tool. This review summarizes the most recent evidence on evaluating the performance of linear EBUS-guided biopsy in various clinical situations.

 
  • References

  • 1 Gnass M, Sola J, Filarecka A. , et al. Initial Polish experience of flexible 19 gauge endobronchial ultrasound-guided transbronchial needle aspiration. Adv Respir Med 2017; 85 (02) 64-68
  • 2 Tyan C, Patel P, Czarnecka K. , et al. Flexible 19-gauge endobronchial ultrasound-guided transbronchial needle aspiration needle: first experience. Respiration 2017; 94 (01) 52-57
  • 3 Jones RC, Bhatt N, Medford ARL. The effect of 19-gauge endobronchial ultrasound-guided transbronchial needle aspiration biopsies on characterisation of malignant and benign disease. The Bristol experience. Monaldi Arch Chest Dis 2018; 88 (02) 915-919
  • 4 Dooms C, Vander Borght S, Yserbyt J. , et al. A randomized clinical trial of Flex 19G needles versus 22G needles for endobronchial ultrasonography in suspected lung cancer. Respiration 2018; 96 (03) 275-282
  • 5 Trisolini R, Natali F, Ferrari M. , et al. Endobronchial ultrasound-guided transbronchial needle aspiration with the flexible 19-gauge needle. Clin Respir J 2018; 12 (04) 1725-1731
  • 6 Chaddha U, Ronaghi R, Elatre W, Chang CF, Mahdavi R. Comparison of sample adequacy and diagnostic yield of 19- and 22-G EBUS-TBNA needles. J Bronchology Interv Pulmonol 2018; 25 (04) 264-268
  • 7 Tremblay A, McFadden S, Bonifazi M. , et al. Endobronchial ultrasound-guided transbronchial needle aspiration with a 19-G needle device. J Bronchology Interv Pulmonol 2018; 25 (03) 218-223
  • 8 Saxena P, El Zein M, Stevens T. , et al. Stylet slow-pull versus standard suction for endoscopic ultrasound-guided fine-needle aspiration of solid pancreatic lesions: a multicenter randomized trial. Endoscopy 2018; 50 (05) 497-504
  • 9 Balwan A. Endobronchial ultrasound-guided transbronchial needle aspiration using 19-G needle for sarcoidosis. J Bronchology Interv Pulmonol 2018; 25 (04) 260-263
  • 10 Garrison G, Leclair T, Balla A. , et al. Use of an additional 19-G EBUS-TBNA needle increases the diagnostic yield of EBUS-TBNA. J Bronchology Interv Pulmonol 2018; 25 (04) 269-273
  • 11 Czarnecka-Kujawa K, Tremblay A, Yasufuku K. , et al. A preclinical evaluation comparing the performance of a novel 19-G flexible needle to a commercially available 22-G EBUS-TBNA sampling needle. Respiration 2018; 95 (01) 55-62
  • 12 Kinoshita T, Ujiie H, Schwock J. , et al. Clinical evaluation of the utility of a flexible 19-gauge EBUS-TBNA needle. J Thorac Dis 2018; 10 (04) 2388-2396
  • 13 Prakash UB. A better bronchoscopic technique to obtain diagnostic tissue from mediastinal lymph node. J Bronchology Interv Pulmonol 2005; 12 (01) 1-2
  • 14 Silvestri GA, Gonzales AV, Jantz MA. , et al. Methods for staging non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physician evidence-based clinical practice guidelines. Chest 2013; 143 (5 Suppl): e211S-e250S
  • 15 Agarwal R, Srinivasan A, Aggarwal AN, Gupta D. Efficacy and safety of convex probe EBUS-TBNA in sarcoidosis: a systematic review and meta-analysis. Respir Med 2012; 106 (06) 883-892
  • 16 Grosu HB, Iliesiu M, Caraway NP. , et al. Endobronchial ultrasound-guided transbronchial needle aspiration for the diagnosis and subtyping of lymphoma. Ann Am Thorac Soc 2015; 12 (09) 1336-1344
  • 17 Sakamoto H, Kitano M, Komaki T. , et al. Prospective comparative study of the EUS guided 25-gauge FNA needle with the 19-gauge Trucut needle and 22-gauge FNA needle in patients with solid pancreatic masses. J Gastroenterol Hepatol 2009; 24 (03) 384-390
  • 18 Na HK, Lee JH, Park YS. , et al. Yields and utility of endoscopic ultrasonography-guided 19-gauge Trucut biopsy versus 22-gauge fine needle aspiration for diagnosing gastric subepithelial tumors. Clin Endosc 2015; 48 (02) 152-157
  • 19 Oki M, Saka H, Sako C. Bronchoscopic miniforceps biopsy for mediastinal nodes. J Bronchology Interv Pulmonol 2004; 11: 150-153
  • 20 Herth FJ, Morgan RK, Eberhardt R, Ernst A. Endobronchial ultrasound-guided miniforceps biopsy in the biopsy of subcarinal masses in patients with low likelihood of non-small cell lung cancer. Ann Thorac Surg 2008; 85 (06) 1874-1878
  • 21 Dhooria S, Aggarwal AN, Gupta D, Behera D, Agarwal R. Utility and safety of endoscopic ultrasound with bronchoscope-guided fine-needle aspiration in mediastinal lymph node sampling: systematic review and meta-analysis. Respir Care 2015; 60 (07) 1040-1050
  • 22 Gandotra S, Dotson T, Lamar Z, Bellinger C. Endobronchial ultrasound transbronchial needle aspiration for the diagnosis of lymphoma. J Bronchology Interv Pulmonol 2018; 25 (02) 97-102
  • 23 Chrissian A, Misselhorn D, Chen A. Endobronchial-ultrasound guided miniforceps biopsy of mediastinal and hilar lesions. Ann Thorac Surg 2011; 92 (01) 284-288
  • 24 Herth FJ, Annema JT, Eberhardt R. , et al. Endobronchial ultrasound with transbronchial needle aspiration for restaging the mediastinum in lung cancer. J Clin Oncol 2008; 26 (20) 3346-3350
  • 25 Chen A, Chrissian A, Misselhorn D, Mayse M. Endobronchial ultrasound-guided transbronchial miniforceps biopsy of mediastinal and hilar lymph node stations. J Bronchology Interv Pulmonol 2009; 16 (03) 168-171
  • 26 Franke KJ, Bruckner C, Szyrach M, Ruhle KH, Nilius G, Theegarten D. The contribution of endobronchial ultrasound-guided forceps biopsy in the diagnostic workup of unexplained mediastinal and hilar lymphadenopathy. Hai 2012; 190 (02) 227-232
  • 27 Darwiche K, Freitag L, Nair A. , et al. Evaluation of a novel endobronchial ultrasound-guided lymph node forceps in enlarged mediastinal lymph nodes. Respiration 2013; 86 (03) 229-236
  • 28 Bramley K, Pisani MA, Murphy TE, Araujo KL, Homer RJ, Puchalski JT. Endobronchial ultrasound-guided cautery-assisted transbronchial forceps biopsies: safety and sensitivity relative to transbronchial needle aspiration. Ann Thorac Surg 2016; 101 (05) 1870-1876
  • 29 Okubo Y, Matsumoto Y, Nakai T. , et al. The new transbronchial diagnostic approach for the metastatic lung tumor from renal cell carcinoma-a case report. J Thorac Dis 2017; 9 (09) E762-E766
  • 30 Stoy SP, Segal JP, Mueller J. , et al. Feasibility of endobronchial ultrasound-guided transbronchial needle aspiration cytology specimens for next generation sequencing in non-small-cell lung cancer. Clin Lung Cancer 2018; 19 (03) 230.e2-238.e2
  • 31 Kris MG, Johnson BE, Berry LD. , et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 2014; 311 (19) 1998-2006
  • 32 Ernani V, Steuer CE, Jahanzeb M. The end of nihilism: systemic therapy of advanced non-small cell lung cancer. Annu Rev Med 2017; 68: 153-168
  • 33 Jänne PA, Smith I, McWalter G. , et al. Impact of KRAS codon subtypes from a randomised phase II trial of selumetinib plus docetaxel in KRAS mutant advanced non-small-cell lung cancer. Br J Cancer 2015; 113 (02) 199-203
  • 34 Blumenthal GM, Karuri SW, Zhang H. , et al. Overall response rate, progression-free survival, and overall survival with targeted and standard therapies in advanced non-small-cell lung cancer: US Food and Drug Administration trial-level and patient-level analyses. J Clin Oncol 2015; 33 (09) 1008-1014
  • 35 NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Non-small-cell Lung Cancer. Version 6.2018; August 21, 2018. Available at: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf . Accessed August 21, 2018
  • 36 VanderLaan PA, Wang HH, Majid A, Folch E. Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA): an overview and update for the cytopathologist. Cancer Cytopathol 2014; 122 (08) 561-576
  • 37 Vilmann P, Clementsen PF, Colella S. , et al. Combined endobronchial and oesophageal endosonography for the diagnosis and staging of lung cancer. European Society of Gastrointestinal Endoscopy (ESGE) Guideline, in cooperation with the European Respiratory Society (ERS) and the European Society of Thoracic Surgeons (ESTS). Eur Respir J 2015; 46 (01) 40-60
  • 38 Labarca G, Folch E, Jantz M. , et al. Adequacy of samples obtained by endobronchial ultrasound with transbronchial needle aspiration for molecular analysis in patients with non-small cell lung cancer: systematic review and meta-analysis. Ann Am Thorac Soc 2018; 15 (10) 1205-1216
  • 39 Folch E, Yamaguchi N, VanderLaan PA. , et al. Adequacy of lymph node transbronchial needle aspirates using convex probe endobronchial ultrasound for multiple tumor genotyping techniques in non-small-cell lung cancer. J Thorac Oncol 2013; 8 (11) 1438-1444
  • 40 Tam AL, Kim ES, Lee JJ. , et al. Feasibility of image-guided transthoracic core-needle biopsy in the BATTLE lung trial. J Thorac Oncol 2013; 8 (04) 436-442
  • 41 Vanderlaan PA, Yamaguchi N, Folch E. , et al. Success and failure rates of tumor genotyping techniques in routine pathological samples with non-small-cell lung cancer. Lung Cancer 2014; 84 (01) 39-44
  • 42 Schneider F, Smith MA, Lane MC, Pantanowitz L, Dacic S, Ohori NP. Adequacy of core needle biopsy specimens and fine-needle aspirates for molecular testing of lung adenocarcinomas. Am J Clin Pathol 2015; 143 (02) 193-200 , quiz 306
  • 43 Sholl LM, Aisner DL, Varella-Garcia M. , et al; LCMC Investigators. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the Lung Cancer Mutation Consortium experience. J Thorac Oncol 2015; 10 (05) 768-777
  • 44 Travis WD, Brambilla E, Noguchi M. , et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 2011; 6 (02) 244-285
  • 45 Knoepp SM, Roh MH. Ancillary techniques on direct-smear aspirate slides: a significant evolution for cytopathology techniques. Cancer Cytopathol 2013; 121 (03) 120-128
  • 46 Jeyabalan A, Bhatt N, Plummeridge MJ, Medford AR. Adequacy of endobronchial ultrasound-guided transbronchial needle aspiration samples processed as histopathological samples for genetic mutation analysis in lung adenocarcinoma. Mol Clin Oncol 2016; 4 (01) 119-125
  • 47 Treece AL, Montgomery ND, Patel NM. , et al. FNA smears as a potential source of DNA for targeted next-generation sequencing of lung adenocarcinomas. Cancer Cytopathol 2016; 124 (06) 406-414
  • 48 Turner SR, Buonocore D, Desmeules P. , et al. Feasibility of endobronchial ultrasound transbronchial needle aspiration for massively parallel next-generation sequencing in thoracic cancer patients. Lung Cancer 2018; 119: 85-90
  • 49 Rooper LM, Nikolskaia O, Carter J, Ning Y, Lin MT, Maleki Z. A single EBUS-TBNA procedure can support a large panel of immunohistochemical stains, specific diagnostic subtyping, and multiple gene analyses in the majority of non-small cell lung cancer cases. Hum Pathol 2016; 51: 139-145
  • 50 Fielding D, Dalley AJ, Bashirzadeh F. , et al. Next-generation sequencing of endobronchial ultrasound transbronchial needle aspiration specimens in lung cancer. Am J Respir Crit Care Med 2017; 196 (03) 388-391
  • 51 Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331 (6024): 1565-1570
  • 52 Topalian SL, Hodi FS, Brahmer JR. , et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366 (26) 2443-2454
  • 53 Sul J, Blumenthal GM, Jiang X, He K, Keegan P, Pazdur R. FDA approval summary: Pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist 2016; 21 (05) 643-650
  • 54 Garon EB, Rizvi NA, Hui R. , et al; KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372 (21) 2018-2028
  • 55 Reck M, Rodríguez-Abreu D, Robinson AG. , et al; KEYNOTE-024 Investigators. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016; 375 (19) 1823-1833
  • 56 McLaughlin J, Han G, Schalper KA. , et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer. JAMA Oncol 2016; 2 (01) 46-54
  • 57 Mansfield AS, Murphy SJ, Peikert T. , et al. Heterogeneity of programmed cell death ligand 1 expression in multifocal lung cancer. Clin Cancer Res 2016; 22 (09) 2177-2182
  • 58 Kim S, Koh J, Kwon D. , et al. Comparative analysis of PD-L1 expression between primary and metastatic pulmonary adenocarcinomas. Eur J Cancer 2017; 75: 141-149
  • 59 Sakata KK, Midthun DE, Mullon JJ. , et al. Comparison of programmed death ligand-1 immunohistochemical staining between endobronchial ultrasound transbronchial needle aspiration and resected lung cancer specimens. Chest 2018; 154 (04) 827-837
  • 60 Sakakibara R, Inamura K, Tambo Y. , et al. EBUS-TBNA as a promising method for the evaluation of tumor PD-L1 expression in lung cancer. Clin Lung Cancer 2017; 18 (05) 527.e1-534.e1
  • 61 Stoy SP, Rosen L, Mueller J, Murgu S. Programmed death-ligand 1 testing of lung cancer cytology specimens obtained with bronchoscopy. Cancer Cytopathol 2018; 126 (02) 122-128
  • 62 Biswas A, Leon ME, Drew P. , et al. Clinical performance of endobronchial ultrasound-guided transbronchial needle aspiration for assessing programmed death ligand-1 expression in nonsmall cell lung cancer. Diagn Cytopathol 2018; 46 (05) 378-383
  • 63 Heymann JJ, Bulman WA, Swinarski D. , et al. PD-L1 expression in non-small cell lung carcinoma: comparison among cytology, small biopsy, and surgical resection specimens. Cancer Cytopathol 2017; 125 (12) 896-907
  • 64 Ilie M, Long-Mira E, Bence C. , et al. Comparative study of the PD-L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: a potential issue for anti-PD-L1 therapeutic strategies. Ann Oncol 2016; 27 (01) 147-153
  • 65 Munari E, Zamboni G, Lunardi G. , et al. PD-L1 expression heterogeneity in non-small cell lung cancer: defining criteria for harmonization between biopsy specimens and whole sections. J Thorac Oncol 2018; 13 (08) 1113-1120
  • 66 Taylor MD, Nagji AS, Bhamidipati CM. , et al. Tumor recurrence after complete resection for non-small cell lung cancer. Ann Thorac Surg 2012; 93 (06) 1813-1820 , discussion 1820–1821
  • 67 Sugimura H, Nichols FC, Yang P. , et al. Survival after recurrent nonsmall-cell lung cancer after complete pulmonary resection. Ann Thorac Surg 2007; 83 (02) 409-417 , 417–418
  • 68 Colt HG, Murgu SD, Korst RJ, Slatore CG, Unger M, Quadrelli S. ; American College of Chest Physicians Evidence-based Clinical Practice Guidelines. Follow-up and surveillance of the patient with lung cancer after curative-intent therapy: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013; 143 (5, Suppl): e437S-e454S
  • 69 de Cabanyes Candela S, Detterbeck FC. A systematic review of restaging after induction therapy for stage IIIa lung cancer: prediction of pathologic stage. J Thorac Oncol 2010; 5 (03) 389-398
  • 70 Koshy M, Fedewa SA, Malik R. , et al. Improved survival associated with neoadjuvant chemoradiation in patients with clinical stage IIIA(N2) non-small-cell lung cancer. J Thorac Oncol 2013; 8 (07) 915-922
  • 71 Pang Z, Yang Y, Ding N. , et al. Optimal managements of stage IIIA (N2) non-small cell lung cancer patients: a population-based survival analysis. J Thorac Dis 2017; 9 (10) 4046-4056
  • 72 Ramnath N, Dilling TJ, Harris LJ. , et al. Treatment of stage III non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013; 143 (5, Suppl): e314S-e340S
  • 73 Wahidi MM, Herth F, Yasufuku K. , et al. Technical aspects of endobronchial ultrasound-guided transbronchial needle aspiration: CHEST guideline and expert panel report. Chest 2016; 149 (03) 816-835
  • 74 Muthu V, Sehgal IS, Dhooria S, Aggarwal AN, Agarwal R. efficacy of endosonographic procedures in mediastinal restaging of lung cancer after neoadjuvant therapy: a systematic review and diagnostic accuracy meta-analysis. Chest 2018; 154 (01) 99-109
  • 75 Szlubowski A, Herth FJ, Soja J. , et al. Endobronchial ultrasound-guided needle aspiration in non-small-cell lung cancer restaging verified by the transcervical bilateral extended mediastinal lymphadenectomy--a prospective study. Eur J Cardiothorac Surg 2010; 37 (05) 1180-1184
  • 76 Anraku M, Pierre AF, Nakajima T. , et al. Endobronchial ultrasound-guided transbronchial needle aspiration in the management of previously treated lung cancer. Ann Thorac Surg 2011; 92 (01) 251-255 , discussion 255
  • 77 Han SG, Yoo H, Jhun BW. , et al. The role of endobronchial ultrasound-guided transbronchial needle aspiration in the diagnosis of recurrent non-small cell lung cancer after surgery. Intern Med 2013; 52 (17) 1875-1881
  • 78 Nasir BS, Bryant AS, Minnich DJ, Wei B, Dransfield MT, Cerfolio RJ. The efficacy of restaging endobronchial ultrasound in patients with non-small cell lung cancer after preoperative therapy. Ann Thorac Surg 2014; 98 (03) 1008-1012
  • 79 Evison M, Crosbie PA, Califano R. , et al. Can EBUS-TBNA provide an accurate diagnosis in patients found to have enlarged or FDG-avid lymph nodes during surveillance of previously treated lung cancer? A retrospective study. J Bronchology Interv Pulmonol 2015; 22 (02) 114-120
  • 80 Guarize J, Casiraghi M, Donghi S. , et al. EBUS-TBNA in PET-positive lymphadenopathies in treated cancer patients. ERJ Open Res 2017; 3 (04) 00009-02017
  • 81 Sanz-Santos J, Serra P, Andreo F. , et al. Transbronchial and transesophageal fine-needle aspiration using a single ultrasound bronchoscope in the diagnosis of locoregional recurrence of surgically-treated lung cancer. BMC Pulm Med 2017; 17 (01) 46-53
  • 82 Cetinkaya E, Usluer O, Yılmaz A. , et al. Is endobronchial ultrasound-guided transbronchial needle aspiration an effective diagnostic procedure in restaging of non-small cell lung cancer patients?. Endosc Ultrasound 2017; 6 (03) 162-167
  • 83 Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC. Treatment of stage I and II non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013; 143 (5, Suppl): e278S-e313S
  • 84 Murgu SD. Diagnosing and staging lung cancer involving the mediastinum. Chest 2015; 147 (05) 1401-1412
  • 85 De Leyn P, Dooms C, Kuzdzal J. , et al. Preoperative mediastinal lymph node staging for non-small cell lung cancer: 2014 update of the 2007 ESTS guidelines. Transl Lung Cancer Res 2014; 3 (04) 225-233
  • 86 El-Osta H, Jani P, Mansour A, Rascoe P, Jafri S. Endobronchial ultrasound for nodal staging of patients with non-small-cell lung cancer with radiologically normal mediastinum. A meta-analysis. Ann Am Thorac Soc 2018; 15 (07) 864-874
  • 87 Naur TMH, Konge L, Clementsen PF. Endobronchial ultrasound-guided transbronchial needle aspiration for staging of patients with non-small cell lung cancer without mediastinal involvement at positron emission tomography-computed tomography. Respiration 2017; 94 (03) 279-284
  • 88 Ong P, Grosu H, Eapen GA. , et al. Endobronchial ultrasound-guided transbronchial needle aspiration for systematic nodal staging of lung cancer in patients with N0 disease by computed tomography and integrated positron emission tomography-computed tomography. Ann Am Thorac Soc 2015; 12 (03) 415-419
  • 89 Vincent B, Huggins JT, Doelken P, Silvestri G. Successful real-time endobronchial ultrasound-guided transbronchial needle aspiration of a hilar lung mass obtained by traversing the pulmonary artery. J Thorac Oncol 2006; 1 (04) 362-364
  • 90 Boujaoude Z, Pratter M, Abouzgheib W. Transpulmonary artery needle aspiration of hilar masses with endobronchial ultrasound: a necessary evil. J Bronchology Interv Pulmonol 2013; 20 (04) 349-351
  • 91 Mehta R, Singla A, Bhat RS, Aurangabadwalla R, Jairaj M. EBUS guided trans-vascular puncture (tv-EBUS) for sampling lesions beyond the great vessels… pushing the boundaries in the mediastinum. Am J Respir Crit Care Med 2014; 189: A2519
  • 92 Vallandaramam P, Srinivasan A, Sivaramakrishnan M. Harpooning lung mass: transaortic fine needle aspiration with ebus scope. Chest 2014; 145 (03) 472A
  • 93 Panchabhai TS, Machuzak MS, Sethi S. , et al. Endobronchial ultrasound-guided transvascular needle aspiration: a single-center experience. J Bronchology Interv Pulmonol 2015; 22 (04) 306-311
  • 94 Folch E, Santacruz JF, Fernandez-Bussy S. , et al. The feasibility of EBUS-guided TBNA through the pulmonary artery in highly selected patients. J Bronchology Interv Pulmonol 2016; 23 (01) 7-13
  • 95 Kazakov J, Hegde P, Tahiri M, Thiffault V, Ferraro P, Liberman M. Endobronchial and endoscopic ultrasound-guided transvascular biopsy of mediastinal, hilar, and lung lesions. Ann Thorac Surg 2017; 103 (03) 951-955
  • 96 Nuguru S, Diab K. Safety and efficacy of endobronchial ultrasound guided transvascular needle aspiration (EBUS-TVNA). Am J Respir Crit Care Med 2017; 195: A1660
  • 97 Mehta RM, Biraris PR, Pattabhiraman V. , et al. Defining expanded areas in EBUS sampling: EBUS guided trans- and intra-pulmonary artery needle aspiration, with review of transvascular EBUS. Clin Respir J 2018; 12 (05) 1958-1963
  • 98 Fujiwara T, Yasufuku K, Nakajima T. , et al. The utility of sonographic features during endobronchial ultrasound-guided transbronchial needle aspiration for lymph node staging in patients with lung cancer: a standard endobronchial ultrasound image classification system. Chest 2010; 138 (03) 641-647
  • 99 Bamber J, Cosgrove D, Dietrich CF. , et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: basic principles and technology. Ultraschall Med 2013; 34 (02) 169-184
  • 100 Trosini-Désert V, Jeny F, Taillade L. , et al. Bronchial endoscopic ultrasound elastography: preliminary feasibility data. Eur Respir J 2013; 41 (02) 477-479
  • 101 Izumo T, Sasada S, Chavez C, Matsumoto Y, Tsuchida T. Endobronchial ultrasound elastography in the diagnosis of mediastinal and hilar lymph nodes. Jpn J Clin Oncol 2014; 44 (10) 956-962
  • 102 Nakajima T, Inage T, Sata Y. , et al. Elastography for predicting and localizing nodal metastases during endobronchial ultrasound. Respiration 2015; 90 (06) 499-506
  • 103 Rozman A, Malovrh MM, Adamic K, Subic T, Kovac V, Flezar M. Endobronchial ultrasound elastography strain ratio for mediastinal lymph node diagnosis. Radiol Oncol 2015; 49 (04) 334-340
  • 104 Huang H, Huang Z, Wang Q. , et al. Effectiveness of the benign and malignant diagnosis of mediastinal and hilar lymph nodes by endobronchial ultrasound elastography. J Cancer 2017; 8 (10) 1843-1848
  • 105 Korrungruang P, Boonsarngsuk V. Diagnostic value of endobronchial ultrasound elastography for the differentiation of benign and malignant intrathoracic lymph nodes. Respirology 2017; 22 (05) 972-977
  • 106 He HY, Huang M, Zhu J, Ma H, Lyu XD. Endobronchial ultrasound elastography for diagnosing mediastinal and hilar lymph nodes. Chin Med J (Engl) 2015; 128 (20) 2720-2725
  • 107 Gu Y, Shi H, Su C. , et al. The role of endobronchial ultrasound elastography in the diagnosis of mediastinal and hilar lymph nodes. Oncotarget 2017; 8 (51) 89194-89202
  • 108 Ma H, An Z, Xia P. , et al. Semi-quantitative analysis of EBUS elastography as a feasible approach in diagnosing mediastinal and hilar lymph nodes of lung cancer patients. Sci Rep 2018; 8 (01) 3571-3578
  • 109 Hernández Roca M, Pérez Pallarés J, Prieto Merino D. , et al. Diagnostic value of elastography and endobronchial ultrasound in the study of hilar and mediastinal lymph nodes. J Bronchology Interv Pulmonol 2018 (Epub ahead of print)
  • 110 Fournier C, Dhalluin X, Wallyn F. , et al. Performance of endobronchial ultrasound elastography in the differentiation of malignant and benign mediastinal lymph nodes: results in real-life practice. J Bronchology Interv Pulmonol 2018 (Epub ahead of print). Doi: 10.1097/LBR.0000000000000551
  • 111 Vial MR, O'Connell OJ, Grosu HB. , et al. Diagnostic performance of endobronchial ultrasound-guided mediastinal lymph node sampling in early stage non-small cell lung cancer: a prospective study. Respirology 2018; 23 (01) 76-81
  • 112 Vaidya PJ, Munavvar M, Leuppi JD, Mehta AC, Chhajed PN. Endobronchial ultrasound-guided transbronchial needle aspiration: Safe as it sounds. Respirology 2017; 22 (06) 1093-1101
  • 113 Yasufuku K, Chiyo M, Sekine Y. , et al. Real-time endobronchial ultrasound-guided transbronchial needle aspiration of mediastinal and hilar lymph nodes. Chest 2004; 126 (01) 122-128
  • 114 Argento AC, Decker R, Puchalski J. Fiducial marker placement via convex probe EBUS. J Bronchology Interv Pulmonol 2016; 23 (02) 181-185
  • 115 Kinsey CM. Endobronchial ultrasound-guided-transbronchial needle injection for direct therapy of lung cancer. AME Med J 2018; 3: 74-79