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Primary tauopathies are a diverse group of sporadic or
genetic neurodegenerative disorders characterized by the
aggregation and dysfunction of tau protein. Tauopathies are
classified based on their neuropathological phenotype. Tau-
related frontotemporal lobar degeneration (FTLD), desig-
nated FTLD-tau, is the umbrella term for progressive supra-
nuclear palsy (PSP), corticobasal degeneration (CBD), and
Pick’s disease or Pick body disease.1 Other pathological
entities such as argyrophilic grain (AG) disease (AGD), pri-
mary age-related tauopathy (PART), aging-related tau astro-
gliopathy (ARTAG), and globular glial tauopathy (GGT) are
now also recognized as primary tau-related disorders.2

Clinical features and neuropathological findings of these
conditions will be discussed in detail. We will also briefly
review disorders where tau pathology is present but is not
considered to play the primary role in pathogenesis.

In tauopathies, with rare exceptions, correlation between
neuropathology and clinical phenotype is poor. The high
degree of clinical overlap between different tauopathies limits
the specificity of the clinical diagnosis. The gold standard for
the diagnosis is neuropathology, but the development of tau

radioligands has opened several newavenues for research and
antemortem diagnosis of tauopathies. The ultimate goal is to
develop biomarkers specific to tauopathies, enabling clinical
trials of disease-modifying therapies. In this review, we will
discuss tau protein biology and pathophysiology, tau interac-
tions with other proteinopathies, and a diagnostic and man-
agement approach to tauopathies.

Tau biology and Pathogenesis

Tubulin associated unit or “tau” is a microtubule binding
protein that is required formicrotubuleassembly.3 Inneuronal
axons, microtubules are essential for axonal transport, cytos-
keletal integrity, and polarization.4 Tau also serves an impor-
tant role in the function of astrocytes and oligodendrocytes.5

Tau protein is encoded for by the microtubule-associated
protein tau (MAPT) gene on chromosome 17q21–22,6 which
exists as two haplotypes. The H1c haplotype has been
associated with a higher risk of tauopathies compared with
the H2 haplotype.7 To understand the role of tau in pathol-
ogy, it is important to understand its native structure. The
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Abstract Tauopathies are rare neurodegenerative disorders related to microtubule-associated
protein tau, which functions to stabilize microtubules. Pathological changes caused by
overexpression or hyperphosphorylation of tau lead to the disengagement of tau from
microtubules and accumulation of toxic intracellular inclusions. Tau pathology is the
underlying mechanism for several sporadic and genetic disorders. These are collec-
tively known as tauopathies. Each tauopathy is differentiated from others by its
neuropathological features such as the presence of specific isoforms of tau, type of
cellular inclusions, and the regions of the brain affected. Neuropathological features,
with a few exceptions however, do not correspond to distinct clinical phenotypes.
There is considerable phenotypic overlap between the different tauopathies. Interac-
tion between tau and other protein inclusions further alters the clinical phenotype.
Recent advances in the development of tau biomarkers, especially the development of
tau radioligands used in positron emission tomography neuroimaging, and a better
understanding of biology and pathology of tau are important first steps toward the
ultimate goal of accurate diagnosis and disease modification in tauopathies.
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protein is comprised of four domains: the N-terminal region,
a central proline-rich region, a microtubule binding domain,
and the C-terminal region. The microtubule binding domain
contains several repeated motifs for binding microtubules.
Alternative splicing of exons 2, 3, and 10 gives rise to six
distinct isoforms of tau. In the microtubule binding domain,
three or four microtubule binding repeat motifs are seen
depending on whether exon 10 is spliced out or retained,
respectively.6,8 The corresponding isoforms are called 3R and
4R tau. The relative predominance of isoforms varies during
stages of life and in different brain regions. The 4R isoform
predominates in certain tauopathies such as PSP and CBD,
whereas 3R tau is associated with Pick’s disease. Isoforms
may even vary between different clinical phenotypes of the
same neuropathological condition.9

There are several mechanisms by which the tau protein
plays a role in the pathogenesis of neurodegenerative disease.
Tau hyperphosphorylation is one of the most well recognized
pathogenic changes. In the phosphorylated state, tau disen-
gages from microtubules, causing depolymerization, whereas
dephosphorylation causes rapid reversal of this phenomenon,
allowing microtubule assembly to occur.10 Tau phosphoryla-
tion is therefore an important pathogenic event and is impli-
cated in microtubule dysfunction and accumulation of
hyperphosphorylated tau aggregates.8 Other posttranslational
modifications may also affect tau function, including O-linked
N-acetylglucosamine modification, ubiquitination, nitration,
oxidation, methylation, and acetylation.11 Altered tau protein
causes neuronal and glial dysfunction by affecting microtu-
bules, leading to impaired axonal transport, altered synaptic
connectivity, andmislocalization of tau to the somatodendritic
compartment.8,12,13 Disproportionate increase in the level of
4R tau isoform has also been considered neurotoxic due to its
greater propensity for hyperphosphorylation and aggrega-
tion.14 As demonstrated in a mouse model, once hyperpho-
sphorylated, tau aggregates can induce pathological
conformational changes in normal tau protein leading to tau
inclusions in normal brain tissue.15 Tau has been hypothesized
to spread in a prion-like manner via microglia, or transynapti-
cally throughout the anatomically and functionally connected
regions.16

Other cellular proteins may independently influence tau
expression and pathogenesis. For example, amyloid β
induces binding of fyn (a Src family nonreceptor tyrosine
kinase) to the proline-rich region of tau, enabling it to cause
N-methyl-D-aspartate receptor-mediated excitotoxicity.17

Another example relates to transactive response deoxyribo-
nucleic acid binding protein of 43 kDa (TDP-43) which
promotes inclusion of exon 10 in tau messenger ribonucleic
acid (mRNA), increasing the expression of 4R tau isoform.18

These pathogenic changes may occur sporadically,
or secondary to genetic mutations. Genetic mechanisms
underlying tauopathies will be reviewed in the next section.

Genetic Tauopathies

Several genetic mutations have been implicated in causing
tauopathies, most importantly those involving the MAPT

gene. Although these are classified separately from sporadic
tauopathies,19,20 the neuropathological findings resulting
from certain MAPT mutations are indistinguishable from
sporadic FTLD-tau subtypes.21,22 This is a significant finding,
as genetic cases can serve as a diseasemodel to study cellular
pathogenesis and disease mechanisms, which could then be
extrapolated to sporadic disease. MAPT H1 haplotype, spe-
cially the H1/H1 genotype, confers increased risk of 4R
tauopathies such as PSP, CBD, and AGD.7,23,24 At least 50
single nucleotide polymorphisms and variants ofMAPT have
been associatedwith an increased risk of FTLD-tau, including
A152T, p.S285R, G303V, P301L, S305S, rs8070723, and p.
s285R, to name a few.25–29 Other genes may also lead to
clinical and neuropathological features reminiscent of spora-
dic FTLD-tau, including chromosome 9 open reading frame
mutations, myelin-associated oligodendrocyte basic protein,
Syntaxin 6, eukaryotic translation initiation factor 2-alpha
kinase 3, dynactin, C-X-C motif chemokine receptor 4, and
estimated glomerular filtration rate.30–33

Pathologic Diagnoses

Progressive Supranuclear Palsy
PSP is a neuropathologically defined 4R tauopathy which
corresponds clinically to Steele–Richardson–Olszewski syn-
drome, named after its original describers in 1964.34 Fea-
tures include astrocytes containing hyperphosphorylated
tau cytoplasmic inclusions, called “tufted astrocytes,” and
dense inclusions in neurons called “globose neurofibrillary
tangles.” These changes are associated with neuronal loss
and gliosis predominantly in the globus pallidus, subthala-
mic nucleus, and substantia nigra. On gross examination of
the brain, mild frontal lobe atrophy, midbrain atrophy, dila-
tion of the aqueduct, and depigmentation of both the locus
coeruleus and substantia nigra are seen.35,36

The classic clinical presentation of PSP, Richardson–Ols-
zewski syndrome, is characterized by prominent postural
instability, vertical supranuclear gaze palsy, and akinetic
rigidity.37 Akin to other neurodegenerative proteinopathies,
PSP has been associated with many additional phenotypes
that are thus far attributed to anatomical variations in cell
loss and tau deposition. Accumulation of tau pathology and
cell loss predominantly in the brainstem and basal ganglia
result in postural instability and gait freezing (previously
known as progressive freezing of gait).38,39 Some patients
with PSP may present with a Parkinson’s disease (PD)-like
picture with asymmetric parkinsonism that may be some-
what levodopa responsive, often carrying a diagnosis of PD
early during the disease course.40 Spread of tau pathology to
cortical areas leads to cortical presentations which may
resemble corticobasal syndrome (CBS; see below for more
discussion), primary progressive aphasia (PPA), primary
progressive apraxia of speech, as well as having other frontal
dysexecutive features.41–46 Extraocular movement abnorm-
alities, especially vertical supranuclear gaze palsy, may occur
with any of the above syndromes and is most classically
associated with PSP–Richardson syndrome. Other ocular
manifestations include square wave jerks, slow vertical
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saccades, and apraxia of eyelid opening. The diversity of
clinical phenotypes associated with PSP were recognized in
the Movement Disorders Society PSP criteria in 2017.20

According to a recent article, progressive gait freezing and
vertical supranuclear gaze palsy remain the most specific
and highly predictive of PSP pathology.47

Corticobasal Degeneration
CBD is also a neuropathologically defined 4R tauopathy
characterized by neurofibrillary tangles, spherical inclusions
(corticobasal bodies), ballooned achromatic neurons, and the
most characteristic lesion, the astrocytic plaque.48 On gross
examination, there is usually asymmetric cortical atrophy in
the frontoparietal region and depigmentation of substantia
nigra with preservation of the locus coeruleus.48 Based on
anatomical distribution, the clinical phenotype associated
with CBD pathology may be highly variable, making ante-
mortem diagnosis extremely challenging. The most recent
diagnostic criteria put forward in 2013 requires a progressive
course of over 1 year in an individual over 50 years of age,
and recognizes four clinical phenotypes including CBS, fron-
tal behavioral-spatial syndrome, nonfluent/agrammatic PPA,
and PSP-like syndrome (PSPS).19 CBS presents with asym-
metric levodopa-resistant parkinsonism, dystonia, myoclo-
nus, asymmetrical limb apraxia, cortical sensory neglect, or
even alien limb phenomenon. Even though CBS is most often
thought to signify CBD pathology, only 5 of 21 CBS cases in a
Queen Square Brain Bank series had CBD pathology.49 In this
cohort, 42% of CBD cases presented with PSP-like clinical
syndrome, and 29% of patients who presented with CBS had
PSP neuropathology. So far, the understanding is that the
clinical presentation of CBD depends on the anatomical
distribution of pathology. For example, CBD-CBS had greater
tau burden in primary motor, somatosensory cortices, and
the putamen, whereas those with a PSPS had greater tau
pathology in the limbic regions and hindbrain structures.50

The most recent diagnostic criteria by Armstrong et al
expands the recognized clinical phenotypes of CBD, leading
to potentially higher sensitivity but lower specificity.51

Pick’s Disease
Pick’s disease is a predominantly 3R tauopathy.52 Gross
neuropathological exam shows significant anterior temporal
and frontal lobe atrophy. Microscopic examination shows
spongiosis, gliosis, cortical pyramidal cell loss, and ballooned
neurons called “Pick cells” containing granulofilamentous
tau deposits, and “Pick bodies” composed of mainly 3R tau
paired helical filaments.53 Extensive gliosis and myelin loss
in the surrounding white matter is commonly seen in
severely affected areas. Amygdala, hippocampus, limbic sys-
tem, and entorhinal cortex are commonly the most severely
affected.54 Patients often present with a behavioral variant
frontotemporal dementia syndrome (bvFTD), progressive
aphasia, and apraxia of speech.55–57

Globular Glial Tauopathy
GGT is a 4R tauopathy characterized by granular filamentous
tau deposits primarily in the cytoplasmofoligodendroglia and

astroglial cells. This may be accompanied by tangle and pre-
tangle changes in the neurons. However, thehallmark iswhite
matterglial taupathology.58Theclinical syndromeis related to
the anatomical location of tau pathology. Josephs et al
described 12 cases where glial 4R tau inclusions were noted
in themotor and premotor cortices and their associatedwhite
matter tracts.59 Clinical features include parkinsonism,
apraxia, upper motor neuron pattern of weakness, and falls.
Premortem diagnoses, as expected, ranged from PSP to CBD
andAlzheimer’sdisease (AD).Neuropathologically, these cases
were distinct from PSP, hence dubbed atypical PSP.59 When
thesepathological changesaffect primarily the frontotemporal
cortices, patients may present with bvFTD.60 Variation in
neuropathological distribution and clinical phenotypes has
been recognized in the consensus criteria for GGT, which
classifies it into three types.58Type I caseshave frontotemporal
pathologyandpresentwith a frontotemporal dementia, type II
cases present with a pyramidal syndrome and have corticosp-
inal tract changes,59 and type III cases have a combination of
frontotemporal and motor pathway pathology, leading to a
mixed FTD and motor neuron disease presentation.58

Argyrophilic Grain Disease
AGD was first described by Braak and Braak in a cohort of
adult onset dementia patients. A small subset was found to
have spindle-shaped argyrophilic deposits in the pyramidal
cells of CA1 region of the entorhinal region.61 AGs are
spindle- or comma-shaped deposits composed of 4R tau
immunoreactive straight filaments located in neuronal den-
drites in the amygdala, entorhinal cortex, and hippocam-
pus.23 AGD occurs with a greater frequency in patients with
PSP and CBD compared with controls, potentially suggesting
a common pathogenic pathway for 4R tauopathies.23 A
staging system has been suggested based on 1,405 serial
autopsy cases.62 Stage 0 is the complete absence of AG; stage
I: AG cluster in the anterior parahippocampal cortex; stage II:
AG spread beyond the anterior parahippocampal gyrus to
involve the amygdala, posterior transentorhinal cortex, and
anterior medial temporal lobe; and stage III where AG shows
clear spread beyond the temporal lobe involving the gyrus
rectus, insular cortex, anterior cingulate, septal nuclei, and
nucleus accumbens with spongiform changes of the para-
hippocampal gyrus.62 However, it is important to note that
AGD is also found in cognitively normal subjects.63,64

Patients who develop amnestic dementia secondary to
AGD are significantly more likely to have higher Braak stage
and gray matter volume loss in the amygdala/hippocampal
complex, frequently occurring in the right brain.65 It is
unclear whether AGD represents an independent disease
process or is an age-related pathology.

Primary Age-Related Tauopathy
PART is an increasingly well recognized condition that is
characterized by 3R þ 4R paired helical filament tau deposi-
tion in the medial temporal lobe structures with minimal to
no β amyloid.66 Neuropathologically, there is evidence of
intraneuronal tau immunoreactive neurofibrillary tangles
with a Braak stage III or lower. Definite PART is defined by
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the absence of amyloid (Thal stage 0), whereas possible PART
may have minimal β amyloid (Thal stage 1–2).67 Patients
with symptomatic PART (previously known as tangle pre-
dominant dementia) present with cognitive impairment and
infrequently dementia, related to the anterior predominant
hippocampal atrophy and the resulting cognitive slowing.68

There is debate as to whether PART represents a distinct
condition or a precursor of AD, and whether patients with
PART will develop amyloid pathology over time. However,
PART has some important features which sets it apart from
AD. Patients tend to be older and live longer than their AD
counterparts. Patients with “symptomatic PART” have a
much higher density of neurofibrillary tangles compared
with early stage AD patients.69 PART is associated with the
presence of ε2 and ε3 alleles, but has a much lower rate of ε4
allelewhich is strongly associatedwith AD.67 A better under-
standing of PART is needed, and it most likely represents an
independent disease process which may occur in conjunc-
tionwith other neuropathologies. Individualswith PARTmay
be good subjects for studies on the effect of tau in the absence
of β amyloid. Prospective studies using molecular positron
emission tomography (PET) imaging may help elucidate the
effects of PART on clinical symptoms, and its influence on
other neuropathologies.

Aging-Related Tau Astrogliopathies

ARTAG is a term applied to a range of astroglial 4R phos-
phorylated tau lesions that are distinct from those described
above. Astroglial tau pathology tends to be more common
after age 60 and may coexist with primary tauopathies or
other disorders; however, its effect if any on clinical pheno-
type is not completely understood.70 Histopathologically,
there are thorn-shaped astrocytes in the white matter and
clusters of astrocytes with cytoplasmic perinuclear fibrillary
tau deposit in the graymatter. Lesions can also be seen in the
subpial, subependymal, and perivascular regions.70 The
amygdala tends to be affected, and the overall distribution
of lesions varies in the presence of AD versus primary 4R
tauopathies.71 Factors that play a role in brain–fluid balance
may be involved in the pathogenesis of ARTAG, as evidenced
by colocalization of connexin-43 and aquaporin-4 with
ARTAG-related changes.72 Whether the presence of ARTAG
causes specific clinical syndromes or influences the pheno-
type of concurrently present neuropathology is not comple-
tely known.

Other Disorders with Tau Accumulation

Several disorders demonstrate neuropathological evidence
of tau protein deposition, but tau may not play the sole or
primary role in many of these diseases. For example, in AD,
tau and amyloid play an equally important role in pathogen-
esis.73 In PD and in multisystem atrophy, α synuclein can
indirectly deplete tau affecting microtubule assembly.74 Tau
inclusions in glial cells have been seen in many unrelated
diseases includingNiemann–Pickdisease type C,75 pantothe-
nate kinase-associated neurodegeneration,76 cerebrotendi-

nous xanthomatosis,77 prion disease,78 subacute sclerosing
panencephalitis,79 and postencephalitic parkinsonism.80

The significance of these findings are not yet established.
Chronic traumatic encephalopathy (CTE) is an increas-

ingly well recognized progressive tauopathy that results
from chronic repetitive head trauma.81 Commonly encoun-
tered in contact sports athletes and military personnel,
symptoms include irritability, aggression, suicidality, and
forgetfulness; this syndrome is characterized by hyperpho-
sphorylated tau and TDP-43 pathology.82 CTE is diagnosed
neuropathologically at autopsy. Perivascular neuronal and
glial intracytoplasmic phosphorylated tau deposits at sulcal
depths distinguish this condition from other neurodegen-
erative tauopathies.83

Clinical Diagnosis

Tauopathies have overlapping clinical features, and therefore
prediction of neuropathology by clinical phenotype alone is
usually imperfect. The gold standard for diagnosis is neuro-
pathology based on distinguishing features of each pathology.
There have been considerable efforts directed toward the
development of disease-specific biomarkers to enable ante-
mortem diagnosis and accurate prediction of neuropathology,
with the main goal of targeting disease-modifying therapy.

Plasma neurofilament level is a potential biomarker of
neurodegeneration and is elevated in PSP.84 Cerebrospinal
fluid (CSF) neurofilament level is elevated in all FTLD syn-
dromes,85 whereas a panel of nine neurofilament-based bio-
markerswasable todistinguishPD fromRichardson syndrome
and CBS, but could not make a distinction between the latter
two syndromes.86 Low levels ofβ amyloid in theCSF havebeen
reported in PSP, CBD, and AD.87 Overall, plasma and CSF
markers of neurodegeneration are likely to be highly nonspe-
cific with limited meaningful diagnostic value.

Neuroimaging-based markers offer a noninvasive way to
potentially predict neuropathology. Structural and func-
tional imaging modalities correlate with clinical phenotype
and areas of neurodegeneration, but are not highly specific to
neuropathology. Recent advent of tau protein radioligands
offers a closer window into neuropathology; however, target
of the radioligand should inform interpretation of images.

Magnetic resonance imaging (MRI) and voxel-based mor-
phometry show regional patterns of atrophy in tauopathies
(see ►Fig. 1). Patients presenting with CBS, from either PSP
or CBD pathology, have a similar pattern of atrophy involving
the frontoparietal graymatter and corresponding subcortical
white matter.88 In other words, the pattern of atrophy
correspondsmore to the clinical syndrome than neuropatho-
logical phenotype.89 PSP has been associated with various
radiological markers of brainstem atrophy such as the “hum-
ming bird sign” and “morning glory sign.”90 Atrophy of the
midbrain is associated with the PSP–Richardson syndrome
phenotype but is not predictive of neuropathology.91 Studies
looking at frontotemporal lobar degeneration syndromes
find frontal and temporal lobe atrophy in all cases regardless
of neuropathology.92 Some earlier studies using MRI volu-
metry found some regional predilections for specific

Seminars in Neurology Vol. 39 No. 2/2019

Rare Tauopathies Ali, Josephs 267

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



neuropathology/genetic phenotypes. For example, indivi-
duals with disease causing CR9ORF72, associated with
TDP-43, had a predilection for frontal lobes and parietal
lobes.93

Like structural MRI, diffusion tensor MRI (DTI) correlates
with clinical phenotypes. DTI technique uses mean diffusivity
ofwatermolecules asa surrogatemarker forwhitematter tract
integrity and function. Clinical phenotype againmay suggest a
subtype of neuropathology, but a considerable degree of over-
lap exist, which makes clinical judgment nonspecific. A study
comparing patients with PSPS (9 of 18 confirmed PSP pathol-
ogy) to CBS found several areas ofoverlapping abnormalities to
exist, including in the corpus callosum, superior cerebellar
peduncle, medial cingulum, premotor, and prefrontal white
matter.94 A CBS-like presentation was associated with greater
DTI abnormalities in the splenium of the corpus callous,
parietal, and premotor cortices compared with PSPS, where

the infratentorial brainstem regions were more significantly
affected.

18-Flourodeoxyglucose PET (FDG-PET) patterns of hypo-
metabolism have been evaluated in autopsy-proven cases of
4R tauopathies.95Hypometabolism in the caudate, thalamus,
midbrain, and supplementary motor cortex occurred in PSP
and other 4R tauopathies. FDG-PET patterns correlate with
the clinical phenotype, areas of neurodegeneration, and
anatomical tau deposition.96

Radioligands with specific binding to tau protein inclusions
were developed primarily for AD research, and have enabled
imaging of proteinopathies, providing a window into neuro-
pathology during life. The first generation of tau radioligands
were developed to bindpaired helicalfilament tau composedof
3Rand4R isoforms, suchas18F-T807, alsoknownasAV-1451.97

Other tracers include 11C-PBB3, THK-5351, and THK-5117.98

AV-1451 is themost commonly reported radioligand and has a

Fig. 1 MRI findings in tauopathies. All panels show normal images for comparison on the left. (A) Midbrain atrophy with the “humming bird sign”
on sagittal T1-weighted imaging. (B, arrow) CBS with asymmetric superior parietal atrophy on axial FLAIR sequence. (C) Frontotemporal atrophy
in Pick’s disease on a coronal MPRAGE sequence. Abbreviations: CBS, corticobasal syndrome; FLAIR, fluid-attenuated inversion recovery; MRI,
magnetic resonance imaging; MPRAGE, magnetization prepared rapid acquisition gradient echo.
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higher binding affinity to tau deposits in AD compared with
straight filament 4R predominant tau as seen in PSP.99 In
comparison, 11C-PBB3 may have a slightly higher affinity for
non-AD type tau found in PSP.100 Tau-PET studies in probable
clinical PSP have shown radioligand uptake in the pallidum,
dentate nucleus of the cerebellum, thalamus, caudate, and
frontal regions.101–103 Similarly, in CBS, including some cases
with pathologically conformed CBD, tau radioligand uptake is
reported in the thalamus, globus pallidus, midbrain precentral
cortex, rolandic operculum, supplementary cortex, and asso-
ciated subcortical white matter.104–106 See ►Fig. 2 for tau-PET
in tauopathies. These imaging finding should be interpreted
carefully because variable binding of tau radioligands to deep
gray structures is seen in the control population. Off-target
binding to neuromelanin, iron deposits, calcification, choroid
plexus, and leptomeningeal neuromelanin also occurs.107Auto-

radiography of pathological brain specimens shows faint bind-
ingofAV-1451to3Rand4Rtau,99,107andtauneuropathology in
PSP shows poor correlation with AV-1451 tau-PET.96

Tau-directed PET imaging has the potential of predicting
neuropathology in patients, providing a biomarker for the
evaluation of disease-modifying drugs. However, further
work is required to develop tau radioligands specific to
different isoforms for higher specificity.

Treatment

Symptomatic
Thus far, no disease-modifying therapies are available for
tauopathies. Management strategies are targeted toward
alleviation of symptoms. Available treatments have been
summarized in ►Table 1.108–111

Fig. 2 AV-1451 Tau-positron emission tomography (PET) in tauopathies. (A) Normal control. (B) CBS (note off target choroid plexus binding),
(C) PSP, and (D) AD. Note the significantly more avid binding of tau radioligands in AD. Abbreviations: AD, Alzheimer’s disease; CBS, corticobasal
syndrome; PSP, progressive supranuclear palsy.
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Disease Modifying
Knowledge of tau biologyand its role in cellular pathogenesis of
primary tauopathies has led to the investigation of a few
possible disease-modifying agents; however, clinical trials
have been infrequent. The glycogen synthase kinase-3 inhibitor
tideglusib, theoretically thought to reduce tau hyperphosphor-
ylation, did not lead to clinical improvement or change in the
course of disease progression in clinical trials.112 Similarly,
davunetide, a microtubule stabilizer capable of reducing tau
hyperphosphorylation, failed to showclinically significant ben-
efit in human studies.113 Riluzole was investigated due to its
potential for neuroprotection and countering excitotoxicity, but
was unsuccessful.114 An emerging area of excitement is the use
of tau-directed immunotherapies including antitau immuno-
globulins, as forms of passive immunization, with the goal of
employing the immune system to clear extracellular tau depos-
its.115 Although some groups have shown reduction of tau
burden and improvement in cognition in animal models,116,117

results are not consistently replicated and concerns exist
regarding the risk of neuroinflammation and inability to target
intracellular pathology.118 Immunization strategies have so far
been unsuccessful in AD where most agents were directed
towardβamyloid.119,120Theseunsuccessfuldrug trials reiterate
the importance of understanding details of cellular processes in
neurogenerative diseases to target the critical pathogenic event
early enough in the disease course. There is growing interest in
targeting intracellular taudeposits using intrabodies,which can
target various isoforms in a highly specific manner121 and
antisense oligonucleotides that can suppress or modify tau
mRNA preventing overexpression.122,123

Keys to a successful therapeutic intervention are (1) to
target the culprit pathogenic step and to do so early enough
in the course; (2) gain support from robust preclinical
models; and (3) confirm target engagement and effect by
disease-specific biomarkers.

Future Directions

Tauopathies are a group of neurodegenerative disorders that
encompass multiple neuropathological conditions and their
resulting clinical manifestations. MAPT dysfunction is an
important pathogenic event. However, wehave an incomplete
understanding of inciting physiological factors, prevalence of
specific isoform, and mechanisms leading to neurodegenera-
tion. Understanding these cellular processes is essential for
developing disease-specific imaging biomarkers and drug
targets. Clinical evaluation of these patients is challenging,
with many overlapping phenotypes and incompletely under-
stood influence of other proteins. Tauopathies are a group of
diverse neuropathologies, and our knowledge of these condi-
tions will continue to grow in the coming years.
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