MIXED POSTERS X
Platelets

CYCLIC NUCLEOTIDE PHOSPHODIESTERASE IN PLATELETS AND PLATELET AGGREGABILITY. H. Iwakuzuki, T. Norotomiya, K. Mashimo, T. Azano and H. Hitaka. The Tokyo Metropolitan Institute of Medical Science, Tokyo, Aichi Prefecture Colony, Kasugai and Kyoto University, Kyoto, Japan.

Though roles of cAMP and cGMP in platelets are thought to be important on platelet aggregation, little information on their phosphodiesterase (PDE) is available. Platelet interaction with various vessel walls might be reflected on cyclic nucleotides and their PDEs. cAMP-PDE and cGMP-PDE in platelets and platelet aggregability were measured in 22 healthy volunteers (41.4±16.2 yrs, mean±SD), 26 atherosclerotic patients (58.4±10.7 yrs) and other miscellaneous patients excluding vascular diseases (41.9±16.4 yrs). PDE activities were measured by the Hidaka and Shibuya method (Biochem. Med., 10:301, 1974). Platelet aggregation induced by ADP and epinephrine was recorded by a platelet aggregometer. Activities of cAMP-PDE and cGMP-PDE of platelets were 2.37±0.52, 7.23±1.87 in the healthy, 2.50±0.85, 7.53±2.60 in the atherosclerotics and 2.38±0.07, 6.09±2.36 pmol/min/10^10 platelets in the miscellaneous patients respectively. No significant difference was observed among the three groups. Platelet aggregabilities also showed no significant difference. However there was a significant inverse correlation between the aggregability by 1 μg/ml of epinephrine and the PDE activities only in the atherosclerotic patients. The correlation coefficients were -0.61 between the primary aggregation and cAMP-PDE, -0.65 between the primary aggregation and cGMP-PDE, -0.58 between the 5 min aggregation and cAMP-PDE and -0.71 between the 5 min aggregation and cGMP-PDE. The slopes in regression lines of cAMP-PDE were far steeper than those of cGMP-PDE. Aggregability and cyclic nucleotide metabolism in circulating platelets may be affected by atherosclerotic vessel walls.

PLATELET DYSFUNCTION WITH GLUTATHIONE REDUCTASE DEFICIENCY AFTER 1,3-BIS(2 CHLOROETHYL)-1-NITROSOUREA. R. McKenna, T. Ahmad, H. Frischer. Rush Presbyterian-St. Luke's Medical Center - Rush University, Chicago, Illinois, USA.

We have previously shown that patients receiving antitumor chemotherapy with 1,3-bis(2 chloroethyl)-1-nitrosourea (BCNU) rapidly acquire a severe generalized glutathione reductase (GSSG-R) deficiency. We now report that when platelets were exposed in vitro to BCNU (30 minutes, 37°C, at 10^-3 M, six separate studies), the resulting GSSG-R deficiency was associated with marked impairment of platelet aggregation in response to ADP (1 μM and 3 μM), to epinephrine and to collagen (all P<0.001). Platelet factor 3 availability was also markedly reduced (p<0.001); prothrombin consumption and glass adhesiveness were unaffected. In addition experiments to evaluate the dose response relationship, epinephrine induced aggregation was abnormal at 5 x 10^-6 M BCNU, ADP (1 μM) induced aggregation was abnormal at 10^-5 M BCNU, while ADP (3 μM) and collagen aggregation became abnormal at 5 x 10^-5 M BCNU. GSSG-R deficiency (less than 11% of control activity), without glucose-6-phosphate dehydrogenase and 6-phosphogluconic dehydrogenase deficiencies, preceded all platelet abnormalities. We have demonstrated that a specific platelet GSSG-R deficiency after BCNU precedes the development of severe platelet dysfunction.