FIBRINOGEN, FIBRINOGEN HETEROGENEITY AND FIBRINOLYTIC ACTIVITY IN DIABETES MELLITUS.
V. Gogolich, I. Iniski, M. Pulini, E. Gorden, B. Lipinski,
St. Elizabeth's Hospital, Tufts University School of Medicine, Boston, Massachusetts, U.S.A.
Fibrinogen (F) concentration, fibrinogen heterogeneity on 3.5% polyacrylamide gels,
and fibrinolytic activity (FA) measured by plasminogen activation in diabetic plates and fibrin
plaque (FPP) were measured in 66 patients with well documented diabetes mellitus (DM) and in 50 healthy subjects of comparable age. A high molecular weight and
lower molecular weight (LMW and LWM) fibrinogen fractions were identified. The mean
values and statistical evaluation of their differences were as follows:

<table>
<thead>
<tr>
<th></th>
<th>CONTROLS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>570 µg/mL</td>
<td></td>
</tr>
<tr>
<td>LMW</td>
<td><0.01</td>
<td>145 mg/dL</td>
</tr>
<tr>
<td>LMW</td>
<td><0.001</td>
<td>32 mg/dL</td>
</tr>
<tr>
<td>FPP</td>
<td><0.01</td>
<td>32 µg/mL</td>
</tr>
<tr>
<td>FA</td>
<td><0.001</td>
<td>25 mg/dL</td>
</tr>
</tbody>
</table>

The clinical duration of DM, degree of control or type of medication did not appear to
influence these findings. However, within the patient group, those with clinical evidence of
microvascular disease had significantly (p<0.02) higher LMW fibrinogen and lower FPP
(p<0.01) than the remainder. These findings suggest that DM is associated with fibrin
deposition, and accelerated F degradation to LMW and LWM fractions and that these processes
may be associated with the development of vascular lesions.

CONGENITAL DYSFIBRINOGENEMIA. (FIBRINOGEN OSLO II). N.C. Godal, F. Brostand
and D. Sierulf. Haematological Research Laboratory, Department IX, Ullevål
Hospital University Clinic, Oslo, Norway.
An autosomal inherited, qualitative fibrinogen defect, associated with
prolonged thrombin clotting time, low plasma fibrinogen when assayed by a fibrin
plasminogen polymerization test and large amounts of fibrinogen antigen determinants
in the supernatant after clotting, is presented. The plasma fibrinogen level
was normal when assayed by an immunological technique or by quantitation of
insoluble fibrin under conditions in which fibrin polymerization is enhanced.
As judged from N-terminal amino acid analyses, fibrinopeptides were split off
at normal speed, and the subunit chains of the fibrinogen appeared normal when
examined on polyacrylamide gels. The abnormality was not associated with
bleeding tendency, and other routine coagulation tests gave normal results.

INTERACTIONS OF HUMAN FIBRINOGEN IN SOLUTION. H. Gervallach, H. Känig. Dept. of Physics, ETH
Zürich, V. Hofmann, P.W. Graub. Dept. of Medicine, University of Berne, M. Zulauf. Biocentre,
Basel, Switzerland.

The intriguing diversity of published translational diffusion constants for the fibrinogen
molecule can hardly be explained, unless interactions between the molecules are postulated. In the
present study we have investigated the possible effect of molecular association and electrostatic
terms of molecular interactions on the Brownian motion. The translational diffusion coefficient
(Dt), rotational diffusion coefficient around the minor axis (Dr) and the sedimentation coefficient
have been measured. The methods used were dynamic light scattering and analytical
ultracentrifugation. The samples were solutions of purified human fibrinogen. The correlation
function corresponding to Dt deviates from a single exponential. The initial slope is found to
depend on concentration, being Dp = (1.7 ± 0.1) 10^{-7} cm^2/s at 100 mg/mL, pH 7.4 and 0.15 molar
Tris-Cl, and increases at fibrinogen concentrations below 2 mg/mL. These results are compatible
with a polydispersity solution, in which single molecules are in equilibrium with pair and higher
aggregates. The nature of the aggregates is end-to-end as indicated from the difference between
the two rotational diffusion constants Dp = 40000 ± 200 and Dr = 10000 ± 300 s^{-1}. On the basis of
the Wall-Glyster model and assumption of end-to-end association we calculated the ratio of
the sedimentation coefficient of single, pair and triplet associates, being 1:1:1:1:20. Therefore,
it is difficult to separate them in a sedimentation run. For ionic strength below 0.05
molar and low fibrinogen concentration (0.1mg/mL) a fast decay appears in the correlation,
indicating that the Brownian motion is strongly influenced by electrostatic interactions.