SIMULTANEOUS 51Cr AND 14C-SEROTONIN PLATELET SURVIVAL MEASUREMENTS. S. Hansen and L.A. Hacker. University of Washington School of Medicine, Seattle, Washington, U.S.A.

In vivo platelet reactions resulting in platelet utilization or release of constituents without platelet destruction have been studied in baboons by measuring isotopic disappearance of doubly labeled platelets using 51Cr as the cytoplasmic label to detect destruction and 14C-serotonin as a granular label to detect release. In 25 normal animals, the 14C-serotonin platelet survival (14C-SPS) was 6.0 days - 0.2 compared with a 51Cr platelet survival (51Cr-PS) of 5.5 days - 0.2, suggesting about 10% reticulization of the 14C label. Platelet labeling in vivo with 14C-serotonin showed that only 13% - 2% of the injected activity became platelet bound; the remainder was cleared from the plasma within three hours. The platelets labeled in vivo survived normally (6.0 days - 0.4). These results indicate that in vivo utilization of serotonin is not extensive and that the process of labeling platelets with 51Cr in vitro does not appreciably shorten their survival in vivo. In other studies, animals with doubly labeled platelets received intravenous infusions of thrombin, imipramine, H2O2-3985, arachidonic acid, ADP, collagen, plasmin, streptokinase, endotoxin, bovine factor VIII, and air bubbles. Thrombin or collagen infusions produced rapid, equivalent disappearance of both labels that correlated closely with decreases in platelet counts indicating that platelet destruction is not associated with rupture of released 14C-serotonin by ambient circulating platelets. In contrast the infusions of EGF-12855, plasmin or some studies with endotoxin induced selective disappearance of 14C-serotonin while 51Cr-PS was normal, reflecting platelet release in vivo without platelet destruction. With ADP, arachidonic acid, streptokinase and air bubbles platelets disappeared from the circulation transiently without loss of either label indicating transient platelet sequestration. We conclude that doubly labeled platelet survival studies are useful in characterizing platelet reactions and their pharmacologic alterations in vivo.

Platelet survival (PS) may be decreased in some thrombocytopenic disorders. Treatment of patients with drugs that suppress platelet function may or may not be associated with normalization of PS. It is uncertain, however, whether a lack of influence on PS necessarily indicates lack of an antithrombotic effect. We have examined this problem in an arterial thrombosis model in rabbits. A non-occlusive mural thrombus was produced in the aortic arch and PS studied using 51Cr-labelled homologous platelets. Thrombus size was assessed by measuring 51Cr accretion. Three groups of 15 animals were studied as follows: group A - thrombus induced 30 min prior to start of PS, group B - as for group A but animals treated with SUL (25 mg/kg) and ASA (25 mg/kg) prior to thrombus induction and 12 hrly thereafter and group C - sham operated controls. Animals in group B showed a 45% reduction in thrombus size when compared with group A (p<0.05). The platelet TI/2 in groups A,B, and C were 25.7, 25.6, and 53.8 hr respectively. The difference between groups A and C and between groups B and C was significant (p<0.01). Thus, treatment with SUL and ASA reduced thrombus size but did not modify the change in PS associated with thrombus induction. Re-examination of PS data by 7 different analytical methods established that all were equally sensitive in discriminating thrombosis but all failed to detect a drug effect. It is concluded that failure to modify platelet survival does not necessarily exclude an antithrombotic effect and that the apparent lack of sensitivity does not relate to the method of data analysis used.

Decreased platelet survival is a clinically accepted indicator of increased platelet consumption, and in some cases may reveal "hypercoagulable" states. Decreased platelet survival has also been demonstrated in the homocystinuric baboon and the hypercholesterolemic rhesus monkey (Ross and Hacker). Treatment with antiplatelet drugs does increase platelet survival in patients as well as in experimental animals.

We have found platelet survival to be decreased in both uricemic and hypercholesterolemic guinea pigs. However, platelet survival in the atherosclerotic rabbit and the streptococcal diabetic rat was normal. When atherosclerotic rabbits or diabetic rats were given platelets labelled with 51Cr and 14C-serotonin, they were found, five days after receiving the platelets, to have higher 51Cr/14C ratios than did their corresponding controls. This suggests a higher serotonin release from circulating platelets in these models.

The 51Cr/14C ratio in platelets may be a more sensitive measure of platelet activity in vivo than is platelet survival alone.