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Introduction

Platelet activation is central for arterial thrombosis and
atherothrombosis. Specific mechanisms of platelet activa-
tion and shear-resistant platelet–vessel wall interaction
assure that the plug adhering to an injured artery (arterial
thrombosis) or to an eroded or ruptured atherosclerotic
plaque (atherothrombosis) can grow into and obstruct the
arterial lumen despite the high-flow velocities in arteries.

The mechanisms of arterial thrombosis and atherothrom-
bosis differ, however, in important aspects1–7: The main pro-
thromboticcomponentsofatheroscleroticplaquesarecollagens
type I and III and tissue factor.2–6,8 Human atherosclerotic
plaque material stimulates thrombus formation in vitro in
two steps: a rapid 1st phase of glycoprotein (GP) VI-mediated
platelet adhesion and aggregation onto plaque collagen is

followed by the 2nd phase of plaque tissue factor-induced
formation of thrombin and fibrin.5 A drug which specifically
targets plaque-triggered platelet GPVI activationwith high local
efficacy but leaves physiologic hemostasis intact would sub-
stantially improve established antiplatelet therapy with aspirin
and/or a P2Y12 antagonist, drugs which both interfere with
systemic hemostasis and increase bleeding risk.9,10

Collagens in atherosclerotic plaques structurally differ from
collagens of healthy vascular connective tissue.11 Plaque col-
lagens show a high turnover due to degradation by matrix
metalloproteinases andsynthesis byexpandedvascular smooth
muscle cells.12–14 Collagen fiber degradation in the arterial
intima increases their association with and retention of other
proteins including lipoproteins and oxidized lipids, and
advanced glycation end products form irreversible covalent
cross-links within collagen fibers.15–17 This alters the collagen
fibrillary structure, detectable by increased autofluorescence
and decreased second-harmonic generation signal, and
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Abstract Bruton’s tyrosine kinase (Btk) is essential for B cell differentiation and proliferation, but
also platelets express Btk. Patients with X-linked agammaglobulinemia due to heredi-
tary Btk deficiency do not show bleeding, but a mild bleeding tendency is observed in
high dose therapy of B-cell malignancies with ibrutinib and novel second-generation
irreversible Btk inhibitors (acalabrutinib and ONO/GS-4059). This review discusses
recent studies that may explain this apparent paradox and gives mechanistic insights
that suggest a unique potential of low dose irreversible Btk inhibitors as atherothrom-
bosis-focused antiplatelet drugs.
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ultimately leads to changes in platelet activation by plaque
collagens as compared with collagens from healthy vascular
tissue.3,4,17–20

Platelet GPVI as Selective Anti-
atherothrombotic Target

The abnormal structure of plaque collagens might explain,
why plaques activate mainly GPVI and barely the integrin
α2β1 on platelets: recombinant GPVI-Fc (Revacept) which
binds to collagen, and anti-GPVI but not anti-integrin α2β1
antibodies inhibit plaque-induced platelet thrombus forma-
tion.4–6,21,22 In flow chamber experiments using hirudin- or
heparin-anticoagulated blood, anti-integrin α2β1 antibodies
did not impair platelet thrombus formation on human
atherosclerotic plaque homogenate from arterially flowing
blood.4,6 Similar results were observed using blood from
integrin α2-deficient mice.4 Thus, targeting GPVI might
preferentially inhibit platelet activation after plaque rupture
and erosion,23 whereas in normal hemostasis inhibition of
GPVI function may at least in part be compensated by the
other major platelet collagen receptor, integrin α2β1.24–27

Indeed, GPVI-deficient mouse and human platelets (con-
stitutive or caused by anti-GPVI antibodies) showonly amild
bleeding tendency (for reference See Refs. 23 and 28),
whereas anti-GPVI antibodies blocked in vitro human pla-
que-induced platelet thrombus formation more efficiently
than aspirin and P2Y12 antagonists,21,29 and inhibited ather-
othrombosis triggered by plaque injury in vivo in murine
models.30,31 Targeting GPVI might thus allow to selectively
inhibit atherosclerotic plaque-induced platelet activation
and its sequelae (myocardial infarction, ischemic stroke).

Indeed, GPVI-inhibiting agents are already studied in
clinical trials: Recombinant GPVI-Fc (Revacept) currently
undergoes clinical phase II testing in patients with stable
coronary artery disease32 and a phase II trial of Revacept in
patients with symptomatic carotid artery stenosis (transient
ischemic attacks or stroke) has been completed (Octo-
ber 2018), their final analysis is eagerly awaited.33,34 A
clinical trial with Act017, a high affinity humanized antibody
fragment (Fab) against GPVI, is planned in acute ischemic
stroke.35

Bruton’s Tyrosine Kinase in Platelet Signal
Transduction

Bruton’s tyrosine kinase (Btk) is a nonreceptor cytoplasmic
tyrosine kinase named after Colonel Ogden Bruton who in
1952 first described and substituted patients with heredi-
taryX-linked agammaglobulinemia (XLA).36XLA is caused by
deficiency or dysfunctional mutations of Btk as proven by
positional cloning and deoxyribonucleic acid cross-hybridi-
zation approaches in 1993.37,38 Btk plays a critical role in B
cell development, and is expressed in pre-B cells and B-
lymphocytes, but not in T-lymphocytes. Btk is a member of
the cytoplasmic Tec family of tyrosine kinases and carries a
pleckstrin homology (PH), a Tec homology, a Src homology 3
(SH3), a SH2, and a SH1 (kinase) domain (►Fig. 1A).

Btk is also expressed in megakaryocytes and platelets, but
XLA patients lack a bleeding phenotype.39,40 A role of Btk in
platelet GPVI signaling was first shown in 1998 as Btk
tyrosine phosphorylation in response to collagen-related
peptide (CRP) and collagen that was absent in platelets of
XLA patients and accompanied by deficient GPVI-mediated
platelet aggregation and secretion.41 This deficiency could be
overcome by high collagen concentrations. Thrombin-
mediated platelet responses were not altered.41

Collagen also activates Tec, another Tec family kinase.42 In
XLA platelets, collagen stimulated tyrosine phosphorylation
of Tec and several other signaling kinases, indicating that Tec
activation is independent of Btk,maycompensate for the lack
of Btk, and sustain XLA platelet function in vivo. This can
explain the absence of a bleeding phenotype in XLA
patients.42 The redundancy of Tec and Btk in sustaining
GPVI-mediated platelet response could be directly demon-
strated in Tec and Btk single- and double-deficient mice.43 In
platelets deficient in Btkor Tec, high concentrations of CRP or
collagen could restore platelet reactivity. In double-deficient
Tec and Btk platelets aggregation was absent or drastically
reduced even on high concentrations of CRP or collagen.43

These studies unequivocally demonstrate that Btk mediates
platelet stimulation by a low degree of GPVI activation that
can be bypassed and enforced by Tec at high GPVI agonist
concentrations. Interestingly, Btk expression in mice plate-
lets is with 12,146 � 1,854 copies per cell much higher as
compared with Tec (508 � 65 copies per cell).44

Btk activation occurs rather downstreamwithin the com-
plex GPVI-signaling cascade. Collagen binding to GPVI first
leads to GPVI dimerization, and the activation of the Src-
family kinases Lyn and Fyn constitutively bound to the
proline-rich region in the GPVI cytosolic tail.45 These phos-
phorylate the immunoreceptor tyrosine-based activation
motif (ITAM) of the dimeric Fc receptor γ-chain (FcRγ)
associated with GPVI.46 Phosphorylated ITAM recruits and
activates the SH2-tandem domain of the tyrosine kinase Syk.
Syk phosphorylates then the adapter protein LAT thereby
initiating formation of a signaling complex comprising
further adapter proteins (SLP-76, GADs, Grb2, Vav1/3) and
providing docking sites for PI3-kinase and phospholipase
Cγ2 (PLCγ2) (►Fig. 1B).45–48 Btk activation occurs down-
stream of PI3-kinase activation42 which increases mem-
brane levels of PIP3 (PI 3,4,5-trisphosphate) that binds
with high affinity to the PH-domain of Btk thereby leading
to its translocation to the plasma membrane.49,50 Lyn then
phosphorylates Btk at Y-551 in the kinase domain, and
subsequent autophosphorylation at Y-223 in the SH3domain
completes the activation of Btk49,51 (►Fig. 1A, B). Y-223
phosphorylation is decisive for kinase activity of Btk. In
platelets, Btk has been reported to interact with and of being
activated by PKCθ.52 Active Btk participates in the tyrosine
phosphorylation and activation of the effector protein
PLCγ2.41,45,46 This increases cytosolic Ca2þ and activates
protein kinase C, the two main downstream signals for
platelet activation.53 Btk also can regulate Ca2þ entry in
platelets without increasing phospholipase C activity.54

Ca2þ entry is inhibited by LFM-A13, the first Btk inhibitor
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described.52,55 Thereby by stimulating PLCγ2 and PLCγ2-
independent Ca2þ entry, Btk plays a central role in raising
cytosolic Ca2þ required for platelet aggregation and secre-
tion53 (►Fig. 1B).

Furthermore, Btk has been reported to be involved in
botrocetin/von Willebrand factor (VWF) signaling through
GPIb:Washed platelets fromX-linked immunodeficientmice
due to mutated Btk did not aggregate in response to botro-
cetin/VWF. Interestingly, in botrocetin/VWF-stimulated
wild-type platelets Lyn, Syk, SLP-76, and PI3K activation
preceded Btk phosphorylation and aggregation similar as
in GPVI-stimulated platelets.56

Ibrutinib and the Novel Irreversible and
Reversible Btk Inhibitors

Ibrutinib, the first-in-class oral irreversible Btk inhibitor, is
approved for various B cell malignancies such as chronic
lymphocytic leukemia (CLL)/small lymphocytic lymphoma,
mantle cell lymphoma (MCL), Waldenström’s macroglobuli-
nemia, and, recently, chronic graft versus host disease.57 The
dose for MCL is 560 mg, for the other diseases 420 mg orally
once daily.57

Ibrutinib binds covalently to cysteine 481 in the active site
thus irreversibly inhibiting Btk; it inhibits to a minor extent
also other kinases.58 New, more selective irreversible Btk

inhibitors have been developed to reduce side effects. Acalab-
rutinib has recently been approved for the treatment of
relapsed MCL,59 and ONO/GS-4059 (tirabrutinib) and BGB-
3111 (zanubrutinib) have passed phase III trials in relapsed or
refractory B-lymphoid malignancies.60,61 Reversible highly
specific and potent Btk inhibitors such as BMS-986142, GDC-
0853 (fenebrutinib), and G-744 were developed to target B
cells andmacrophages invariousautoimmunediseasessuchas
rheumatoid arthritis and lupus nephritis.62–66 The blood–
brain barrier passing covalent Btk inhibitors evobrutinib
(M2951) and PRN-2246 are studied in patients with multiple
sclerosis.67,68

In kinase-inhibition assays, acalabrutinib was found to be
more specific for Btk than ibrutinib. Ibrutinib inhibited also
other kinases including the Src-kinases Lyn and Fyn (with 10-
and 20-fold higher IC50’s, respectively) and Tec (with a
fourfold higher IC50) as compared with Btk.59 However,
recently four different kinase assay platforms failed to con-
firm a higher selectivity of acalabrutinib for Btk versus Tec
compared with ibrutinib.69 Three of the kinase panel plat-
forms showed lower IC50 values of ibrutinib and acalabruti-
nib for Btk inhibition than for Tec inhibition. In all platforms,
ibrutinib inhibited Btk more potently (10- to 100-fold) than
acalabrutinib.69 Using the KINOMEscan platform that
screens the binding to 442 kinases, ONO/GS-4059 bound
with similar high affinity only to Tec and Btk.60 Thus, based
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Fig. 1 Bruton’s tyrosinekinase (Btk)domain structure, andBtkactivation and signaling inplatelets. (A) PH, pleckstrinhomology; TH, Tec homology; SH, Src
homology; the SH1 domain is identical to the kinase domain. Y223, autophosphorylation site. (B) Glycoprotein (GP) Ib and GPVI stimulation share Btk
activation pathways (dashed lines); Btk downstream signaling stimulates independently PLCγ2 and Ca2þ entry (red lines). For details see text. Syk
phosphorylates the adapter protein LATwhich provides docking sites for further adapter proteins (not shown), PI3-kinase, and PLCγ2. The pathway of Tec
activation is similar to that of Btk.48 DAG, 1,2-diacylglycerol; LAT, linker for activation of T cells; IP3, inositol 1,4,5-trisphosphate; PLCγ2, phospholipase Cγ2;
PI3-kinase, phosphatidylinositol 3-kinase; PIP3, phosphatidylinositol(3,4,5)-trisphosphate.
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on the in vitro kinase panels, ibrutinib and acalabrutinibmay
inhibit Btk at lower concentrations than required to inhibit
Tec in intact cells. Concordant with the results of kinase
panels, cellular Btk on-target assays demonstrated a higher
potency of ibrutinib as compared with acalabrutinib and
ONO/GS-4059.69

Adverse events such as rash, diarrhea, arthralgias,myalgias,
atrial fibrillation, and bleeding are associated with ibrutinib
therapy of patients with CLL and MCL. In an analysis of 15
clinical studies of CLL and MCL of patients (n ¼ 1,768) on full
dose ibrutinib therapy including 4 randomized clinical trials,
the most common bleeding events were low-grade bleedings
including contusion, petechiae, epistaxis, and hematomas,
which occurred in approximately 35% of patients (vs. 15% to
the comparator in randomized clinical trials).70 Of note,
approximately 50% of the studied CLL and MCL patients had
an additional antiplatelet or anticoagulation therapy. Risk
factors for lowgradebleeding on full dose ibrutinib in patients
with leukemia included low baseline platelet count, and con-
comitant antiplatelet or anticoagulant therapy.70 Interestingly,
the proportion of major hemorrhage associated with long-
term ibrutinib therapy was not higher,70,71 and use of antic-
oagulants and/or antiplatelet drugs increased the relative risk
for major hemorrhage in both the ibrutinib-treated patients
and comparator-treated patients to a similar degree (1.9% vs.
2.4%) indicating that ibrutinib may not alter the effect of
additional antiplatelet or anticoagulation therapy on the risk
of major hemorrhage in B cell malignancies.70

The bleeding side effects of ibrutinib—not observed in
Btk-deficient XLA patients—have been attributed to off-
target effects on other kinases.59 However, the Calquence
(acalabrutinib) full prescribing information in acalabrutinib-
treated patients with hematological malignancies (n ¼ 612)
reports a similar pattern of side effects including atrial
fibrillation (3%), lowgrade bleeding events (petechiae, bruis-
ing; �50%), and rare grade 3 or higher bleeding events
(gastrointestinal, intracranial) (2%).72 Very recently, the
long-term Calquence follow-up data in MCL patients
(n ¼ 121) showed bleeding events of grade 1 and 2 in 33%
of patients, and the ongoing Calquence CLL clinical trial
(n ¼ 99) showed bleeding events (all grades) in even 64%
of patients and in 3% of patients grade 3 bleeding.73ONO/GS-
4059-treated patients (n ¼ 28) had also similar incidence of
low grade bleeding events (petechiae, purpura, bruising).74

Therefore, treatment of CLL and MCL patients with ibrutinib
or the new Btk inhibitors apparently does not differ in side
effects including bleeding.

Effect of Btk Inhibitors on Platelets and
Possible Mechanisms of Bleeding in CLL and
MCL Patients Treated with Btk Inhibitors

In accordance with the role of Btk in GPVI signaling, GPVI-
mediated platelet aggregation and secretion induced by
collagen and CRP in washed human platelets, platelet-rich
plasma (PRP), and blood was inhibited by ibrutinib and
acalabrutinib in vitro and ex vivo,69,75–79 and by ONO/GS-
4059, BGB-3111, and evobrutinib in vitro.80

In support for the involvement of Btk in botrocetin/VWF-
stimulated aggregation of mouse platelets, various Btk inhi-
bitors (ibrutinib, acalabrutinib, ONO/GS-4059, BGB-3111, evo-
brutinib) have been shown to inhibit ristocetin-induced
platelet aggregation in human blood.79,80 Ristocetin-induced
platelet aggregation in bloodmeasuredbyMultiplatehas been
used tomonitor the bleeding tendency in CLL patients treated
with ibrutinib; this method could possibly be used to predict
the risk of severe bleeding.81 It is, however, uncertainwhether
inhibition ofVWF/GPIb signaling by ibrutinib is responsible for
the inhibition of platelet adhesion onto immobilized VWF
under arterial flow.76 Also GPVI plays a critical role in this
process,82 probably due to the coassociation of GPIb and GPVI
in resting and activated human platelets.83 Thus, inhibition of
GPVI signaling by ibrutinib could explain impairment of
platelet adhesion onto VWF surfaces.

A 30% reduction of low dose (5 µM) thrombin receptor
activator for peptide (TRAP)-induced aggregation by ibrutinib,
acalabrutinib, and ONO/GS-4059 has been found in vitro.79

However, TRAP-induced aggregation was not inhibited in
patients treatedwith ibrutinib or acalabrutinib.77 Also, higher
dose (15 µM) TRAP-induced aggregation was not impaired in
healthy volunteers after ibrutinib intake (own unpublished
results). In addition, platelet aggregation by a protease-acti-
vated receptor 4-activating peptide was not inhibited by
ibrutinib, acalabrutinib, and ONO/GS-4059.79 Moreover,
thrombin does not stimulate Btk phosphorylation in nonag-
gregating platelets.42 Btk inhibitors (ibrutinib, acalabrutinib,
ONO/GS-4059) also did not impair platelet aggregation in PRP
or blood in response to adenosine diphosphate (ADP), epi-
nephrine,arachidonicacid, andU46619.Together these results
indicate that G protein coupled receptor-induced platelet
signaling and fibrinogen-mediated platelet aggregation is
not affected by Btk inhibitors.75–77,79 Thus, Btk activation
downstream of integrin αIIbβ3 in aggregating platelets84 is
apparently not of functional relevance.

When washed platelets were incubated in vitro with high
concentrations of ibrutinib only for shorter times (30 sec-
onds–5 minutes) and then washed again, their response on
high CRP concentration was almost fully recovered indicat-
ing that short-term platelet inhibition under these condi-
tions cannot be due to covalent modification of Btk or Tec.78

However, in vitro, Btk-specific irreversible platelet inhibition
may occur at low drug concentrations but requires longer
(> 5 minutes) incubation times. Indeed, inhibition of GPVI-
dependent aggregation of platelets in blood by low concen-
trations of ibrutinib and the novel Btk inhibitors (acalabru-
tinib, ONO/GS-4059, BGB-3111, evobrutinib) increased with
drug exposure time from 5 minutes reaching the full effect
within 60 minutes.80

The higher potency of ibrutinib (IC50 0.29 nM) compared
with acalabrutinib (IC50 2.79 nM) for Btk inhibition in panel
kinase assays69 parallels its higher potency to inhibit in vitro
CRP- or collagen-activated aggregation in washed platelets,
PRP, or blood (see►Table 1). Unexpectedly, despite of protein
binding of the lipophilic Btk-inhibitors, the IC50 values of
ibrutinib and acalabrutinib for inhibition of aggregation
were higher in washed platelets as compared with PRP or
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blood. The higher grade of GPVI activation by CRP as com-
pared with low collagen concentrations and the shorter
preincubation times applied in studies of washed platelets
may explain, at least in part, these differences. Of note,
prolonging the incubation time in blood to 60 minutes
yielded 3 to 5 times lower IC50 values for inhibition of platelet
aggregation by submaximal collagen concentrations as com-
pared with the 15-minute preincubation (►Table 1).80 By
comparing these in vitro IC50 values with peak plasma
concentrations of Btk inhibitors in patients treated for B
cell malignancy59,60,69,85,86 (►Table 1), it appears that 5-
to15-fold lower than antiproliferative doses of Btk inhibitors
will be sufficient to inhibit low grade GPVI-mediated platelet
activation by submaximal collagen concentrations or ather-
osclerotic plaque material. This has indeed been demon-
strated in human volunteers taking only 140 mg ibrutinib
each day or on alternate days.79

The mechanisms of bleeding in patients with B cell malig-
nancies treated with Btk inhibitors (ibrutinib, acalabrutinib)
are obviously complex.87 A longitudinal study of 14 patients
treated with ibrutinib reported a correlation between occur-
rence of bleeding events and decreased platelet response to
collagen in PRP and firm adhesion on VWF under arterial
flow.76 To understand, why major bleeding events are appar-
ently more frequent in patients treated with ibrutinib than
with acalabrutinib, platelets were incubated with these drugs
in vitro and also studied ex vivo in patients on Btk inhibi-
tors.77,78 In washed platelets short-term incubation (5 and
10 minutes) with low concentrations of ibrutinib and acalab-
rutinib suppressed CRP-stimulated platelet Btk phosphoryla-

tion at Y223,76–78 that correlated with inhibition of platelet
aggregation stimulatedby lowCRPconcentrations.76,77Higher
CRP concentrations overcame inhibition of aggregation in
washed platelet by ibrutinib and acalabrutinib despite still
complete suppression of Btk activity,77,78 and also reversed
inhibition of aggregation of PRP in some patients treatedwith
ibrutinib and acalabrutinib.77

Lower doses of ibrutinib and acalabrutinib which suffice
to inhibit Btk did not inhibit CRP-stimulated Tec phosphor-
ylation in washed platelets but higher concentrations inhib-
ited Tec phosphorylation, too.77,78 High concentrations of
ibrutinib (10- to 30-fold higher than required to inhibit Btk)
—but not of acalabrutinib—inhibited also CRP stimulation of
Src and Lyn kinases inwashed platelets.77,78 Inhibition of Src
kinasesmight lead to inhibition of integrin αIIbβ3 outside-in
signaling and platelet adhesion to immobilized fibrinogen88

as observed at high ibrutinib concentrations89 and cause
instability of platelet thrombi formed on collagen in flowing
blood as observed in two out of six patients on ibrutinib
therapy.77 Thus, major bleeding events (grade 3 and higher:
gastrointestinal and intracranial hemorrhage, epistaxis) that
are more often observed in patients on ibrutinib than on
acalabrutinib therapymight be explained byaccumulation of
high ibrutinib concentrations in platelets with off-target
effects on Src kinases.

Bleeding of grade 1 and 2 (petechiae, ecchymosis, bruising)
has been reported to be associated with ibrutinib and acalab-
rutinib therapy in up to 50% of CLL and MCL patients.72,90

Obviously, the drug concentrations required for treatment of
B cellmalignancies—and not needed for inhibition of theGPVI-

Table 1 IC50 values of Btk inhibitors for inhibition of GPVI-mediated platelet aggregation in studies of washed platelets, PRP, and
blood. For comparison are below the antiproliferative therapeutic maximal plasma concentrations (Cmax) of Btk inhibitors

Study Platelet
preparation

Preincubation
time (min)

GPVI agonist Ibrutinib
(Mw 440)
IC50, µM

Acalabrutinib
(Mw 465)
IC50, µM

ONO/GS-4059
(Mw 491)
IC50, µM

Ref. 77 Washed pl. 5 CRP-XL (1 µg/mL) 0.501 6.3 n.d.

Ref. 78 Washed pl. 5 CRP (10 µg/mL) 1.19 21.25 n.d.

Ref. 76 PRP 10 Submaximal collagen 0.5 n.d. n.d.

Ref. 69 PRP 15–45 Half-maximal collagen 0.35 � 0.07 1.85 � 0.55 3.15 � 3.58

Ref. 79 Blood 15 Plaque 0.18 � 0.05
(79 ng/mL)

0.34 � 0.19
(158 ng/mL)

0.79 � 0.33
(387 ng/mL)

Ref. 80 Blood 15 Submaximal collagen 0.12 � 0.04
(53 ng/mL)

1.21 � 0.34
(562 ng/mL)

1.2 � 0.83
(589 ng/mL)

Ref. 80 Blood 60 Submaximal collagen 0.025 � 0.01
(11 ng/mL)

0.372 � 0.09
(173 ng/mL)

0.268 � 0.14
(131 ng/mL)

Plasma Antiproliferative therapeutic Cmax (µM)

Ibrutinib Acalabrutinib ONO/GS-4059
aRef. 85

Ref. 69
bRef. 59
cRef. 60

0.31a;
(136 ng/mL)
0.37a

(163 ng/mL)

1.78b

(827 ng/mL)
1.95c

(957 ng/mL)

Abbreviations: Btk, Bruton’s tyrosine kinase; CRP-XL, cross-linked collagen-related peptide; GPVI, glycoprotein VI; PRP, platelet-rich plasma.
aIbrutinib 420 mg daily and 560 mg daily, respectively.
bAcalabrutinib 100 mg twice daily.
cONO/GS-4059 320 mg daily.
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mediated response of platelets to low collagen or plaque79,80—
unnecessarily inactivate Tec in addition to Btk which comple-
tely shuts off GPVI signaling. Inhibition of Tec in addition to Btk
might be one explanation for the low grade bleeding observed
after ibrutinib and acalabrutinib therapy, but absent in XLA
patients (►Fig. 2).

However, the lowgrade bleeding observed in CLL andMCL
patients on ibrutinib and acalabrutinib might not be
explained solely by a direct drug effect on platelets. Patients
with B cell malignancies have an intrinsic increased risk for
bleeding based on low platelet counts, coagulation disorders,
and other comorbidities.70 Moreover, thrombocytopenia in
the context of inflammation leads to loss of vascular integrity
and localized hemorrhage.91 Furthermore, CLL lymphocytes
express the ectonucleotidase CD39 degrading extracellular
ADP and thus reducing platelet aggregation.92 The latter
might explain why already before start of ibrutinib primary
hemostasis measured with the platelet function analyzer
(PFA-100, epinephrine-collagen cartridge) was impaired in
22 out of 84 CLL patients, and why CLL patients showed a
decreased platelet aggregation in blood on ADP and collagen
as compared with normal controls.93 When lymphocyte
counts fell on ibrutinib treatment, the aggregation response
to ADP improved, whereas response to collagen was further
reduced, although not substantially different from XLA
patients which do not show bleeding.93 This suggests that
inhibition of Btk and collagen-mediated aggregation is not
exclusively accountable for ibrutinib-related bleeding. This is
also supported by a study in mice demonstrating that
ibrutinib treatment which inhibited GPVI-mediated platelet
activation did not cause bleeding in models of inflammatory
hemorrhage.94 Furthermore, new ibrutinib analogs adminis-
tered orally to nonhuman primates for 10 days did not

increase template skin bleeding time.95 A recent in vitro
study showed that it is possible to achieve platelet GPVI
inhibition without hemostatic impairment by prolonged
blood incubation with low concentrations of ibrutinib and
the novel Btk inhibitors acalabrutinib, ONO/GS-4059, BGB-
3111, and evobrutinib.80 In this regard it should be empha-
sized that bleeding has not been reported so far in healthy
volunteers taking ibrutinib.

Low Dose Irreversible Btk Inhibitors as Focal
Antiplatelet Therapy

Atherosclerotic plaques stimulate static platelet aggregation
and platelet thrombus formation under flow via GPVI by their
collagen type I and III content.4–6,21,96 Recently, it was shown
that ibrutinib at therapeutic concentrations inhibited in vitro,
as well as ex vivo in blood from patients on CLL dose and from
volunteers on low dose, platelet aggregation induced by
atherosclerotic plaquematerial.79Of note, ibrutinib inhibition
was demonstrated with complete human plaque material
containing all potential platelet-activating compounds under
static conditions as well as under flow.Moreover, microscopic
studies with superfusion over human atherosclerotic plaque
homogenates and tissue sections at shear rates present in
intact (600/s) or mildly stenotic (1,500/s) atherosclerotic
coronary arteries demonstrated that plaque collagen initiated
platelet arrest via GPVI and Btk inhibitors suppressed contin-
ued thrombus growth.21,79 Acalabrutinib and ONO/GS-4059
added in vitro had similar effects on plaque-induced static
platelet aggregation and thrombus formation under flow,
albeit with IC50 values for inhibition of plaque-induced static
platelet aggregation twofold (acalabrutinib) and fourfold
(ONO/GS-4059) higher than ibrutinib.79

Signalling

GPVI, high activation

Plaque Collagen

Btk
ADP
TxA2

Collagen, high

GPVI, low activation

Low dose of 
irreversible BTKi
Ibrutinib
Acalabrutinib
ONO/GS-4059
BGB-3111
Reversible BTKi
GDC-0853

Platelet

Submaximal platelet 
aggregation

XLA Platelet 
Phenotype

Tec

Collagen, low

Tec

ADP
TxA2

Maximal platelet 
aggregation

Fig. 2 Model of the selective anti-atherothrombotic effect of low dose irreversible Bruton’s tyrosine kinase inhibitors (BTKi). Low concentrations
of ibrutinib and second-generation irreversible Btk inhibitors selectively inhibit Btk in human platelets thereby inhibiting the low degree of
glycoprotein (GP) VI and platelet activation by atherosclerotic plaque and low collagen concentrations. Reversible Btk inhibitors which do not
inhibit Tec are expected to show the same effect. High collagen concentrations can surmount Btk inhibition by activating Tec. This situation
resembles the platelet phenotype of X-linked agammaglobulinemia (XLA) patients who are deficient of Btk and do not show bleeding.
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Moreover, platelet inhibition by ibrutinib, acalabrutinib,
and ONO/GS-4059 under arterial flow was plaque-specific.
Platelet thrombus formation onto collagen fibers under flow
was not inhibited by ibrutinib neither in vitro nor ex vivo
after oral drug intake. This was explained mainly by pre-
served Btk function on integrin α2β1-dependent platelet
adhesion to native collagen.79 Collagen requires both col-
lagen receptors to ensure optimal platelet thrombus forma-
tion under flow.24–27

A further difference between collagen types I and III of
connective tissue and atherosclerotic plaques is the limited
capacity of plaque to bind GPVI.6 Already low concentrations of
ibrutinib and other Btk inhibitors effectively prevent the low
degree of GPVI-dependent static platelet aggregation induced
by saturating plaque concentrations,21,79 low collagen, and CRP
concentrations77–80 (►Fig. 2). Also, in a study using PRP stimu-
latedwith half maximal collagen concentrations, Btk inhibition
was found to be the primary brake on platelet aggregation: The
potencies at which Btk inhibitors suppressed collagen-induced
platelet aggregationcorrelatedwith their potencies inon-target
Btk-assays, but not with Tec-assays; this is exemplified by
platelet inhibition with RN486, a highly selective reversible
Btk inhibitor with only little Tec impairment.69 Furthermore,
platelet inhibition by Btk inhibition or lack of Btk in XLA or Btk-
deficientmiceplateletscanbesurmountedbyhighcollagenand
CRP concentrations providing more GPVI-binding sites and a
higher degree of GPVI signaling which then bypasses Btk by
activating Tec41–43,77,78,80 (►Fig. 2).

It is unlikely that suppression of Btk-signaling down-
stream of GPIb plays a role in the plaque-specific platelet
suppression by Btk inhibitors. Although Btk signaling after
VWF activation of GPIb was effectively suppressed by ibru-
tinib, as indicated by the low IC50 (0.085 µM) for inhibition of
ristocetin-induced static platelet aggregation, platelet
thrombus formation onto collagen at the high shear rate of
1,500/s which requires binding of VWF to GPIb was not
significantly inhibited.79 This indicates that Btk signaling
after VWF binding to GPIb under blood flow at high shear
is not essential for platelet thrombus formation.

A small pilot study showed that lower doses of Btk inhibi-
tors than used for B cell malignancies may suffice for anti-
platelet therapy. Ibrutinib (140 mg) each day or on alternate
days for 1 week caused full suppression of atherosclerotic
plaque-induced platelet aggregation under static and flow
conditions and was more effective than aspirin (100 mg/
day).79 A preferential Btk inhibition in platelets without
impairing B cell function and immune defense might be
achievable in vivo by exploiting the lack of de novo enzyme
synthesis in platelets and the covalent binding of irreversible
Btk inhibitors to Btk, similar to the situation after low dose
aspirin intake.97 Portal venous blood levels reached during
absorption of low doses of Btk inhibitorsmay suffice to inhibit
the low grade GPVI-dependent platelet activation relevant for
atherothrombosis. All these mechanistic insights suggest a
unique potential of Btk inhibitors as new atherothrombosis
focused oral antiplatelet drugs. This could be tested in clinical
studies of patients receiving a low dose of approved irrever-
sible Btk inhibitors (ibrutinib, acalabrutinib) prior to elective

percutaneous coronary interventions.79,98 An alternative
would be the short-term application of reversible Btk inhibi-
tors suchas fenebrutinibandG-744,whichmayavoidbleeding
due to their absent activity on Tec.64,66

Concerning potential cardiovascular applications of Btk
inhibitors the pricing of these drugs is still high, but similar to
other tyrosine kinase inhibitors, prices are expected to drop
sharply as soon as generic drugs become available.99 For
ibrutinib, this could be the case after 2026, and various
companies already manufacture ibrutinib as active pharma-
cological ingredient.100
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