Synlett 2019; 30(15): 1825-1829
DOI: 10.1055/s-0039-1690006
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Tetrahydroisoquinolines by Visible-Light-Mediated 6-exo-trig Cyclization of α-Aminoalkyl Radicals

Michael Grübel
,
Christian Jandl
,
Thorsten Bach
Further Information

Publication History

Received: 14 May 2019

Accepted after revision: 01 July 2019

Publication Date:
17 July 2019 (online)


Abstract

Starting from the respective tertiary α-silylmethyl amines, the intramolecular cyclization of α-aminoalkyl radicals to Michael acceptors produced tetrahydroisoquinolines. The reaction conditions included the use of 5 mol% of an iridium photoredox catalyst, dimethylformamide as the solvent, and equimolar amounts of water and cesium carbonate as the additives. 13 substrates were synthesized from ortho-alkylbenzaldehydes in a three-step procedure involving a carbonyl condensation, a radical bromination, and a substitution by a secondary α-silylmethyl amine. After optimization of the photocyclization, the reaction delivered tetrahydroisoquinolines in moderate to high yields (41–83%). A facial diastereoselectivity (dr ≅ 80:20) was observed with chiral substrates and a crystal structure provided evidence for the relative configuration of the major diastereoisomer. A catalytic cycle with direct electron transfer to the photoexcited metal catalyst is proposed.

Supporting Information

Primary Data

 
  • References and Notes

    • 2a Pienta NJ, McKimmey JE. J. Am. Chem. Soc. 1982; 104: 5501
    • 2b Dunn DA, Schuster DI. J. Am. Chem. Soc. 1985; 107: 2802
    • 2c Dinnocenzo JP, Banach TE. J. Am. Chem. Soc. 1989; 111: 8646
    • 2d Miyake Y, Nakajima K, Nishibayashi Y. J. Am. Chem. Soc. 2012; 134: 3338
    • 3a Chu L, Ohta C, Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
    • 3b Fan L, Jia J, Lefebvre HQ, Rueping M. Chem. Eur. J. 2016; 22: 16437
    • 3c Zuo Z, Cong H, Li W, Choi J, Fu GC, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 1832
  • 4 Ashley MA, Yamauchi C, Chu JC. K, Otsuka S, Yorimitsu H, Rovis T. Angew. Chem. Int. Ed. 2019; 58: 4002
    • 5a Yoon UC, Kim JU, Hasegawa E, Mariano PS. J. Am. Chem. Soc. 1987; 109: 4421
    • 5b Hasegawa E, Xu W, Mariano PS, Yoon UC, Kim JU. J. Am. Chem. Soc. 1988; 110: 8099
    • 5c Xu W, Yoon TJ, Hasegawa E, Yoon UC, Mariano PS. J. Am. Chem. Soc. 1989; 111: 406
    • 5d Pandey G, Kumaraswamy G, Bhalerao UT. Tetrahedron Lett. 1989; 30: 6059
    • 5e Jung YS, Swartz WH, Xu W, Mariano PS, Green NJ, Schultz AG. J. Org. Chem. 1992; 57: 6037
    • 5f Pandey G, Reddy GD, Kumaraswamy G. Tetrahedron 1994; 50: 8185
    • 5g Jonas M, Blechert S, Steckhan E. J. Org. Chem. 2001; 66: 6896
    • 5h Cho DW, Yoon UC, Mariano PS. Acc. Chem. Res. 2011; 44: 204
  • 6 Nakajima K, Kitagawa M, Ahida Y, Miyake Y, Nishibayashi Y. Chem. Commun. 2014; 50: 8900
  • 7 Wayner DD. M, Dannenberg JJ, Griller D. Chem. Phys. Lett. 1986; 131: 189
    • 8a Das J, Kumar JS. D, Thomas KG, Shivaramayya K, George MV. J. Org. Chem. 1994; 59: 628
    • 8b Das J, Kumar JS. D, Thomas KG, Shivaramayya K, George MV. Tetrahedron 1996; 52: 3425
    • 9a de Alvarenga ES, Mann J. J. Chem. Soc., Perkin Trans. 1 1993; 2141
    • 9b de Alvarenga ES, Cardin CJ, Mann J. Tetrahedron 1997; 40: 3169
    • 9c Bertrand S, Glapski C, Hoffmann N, Pete J.-P. Tetrahedron Lett. 1999; 40: 3169
    • 9d Bertrand S, Hoffmann N, Pete J.-P. Eur. J. Org. Chem. 2000; 2227
    • 9e Bauer A, Westkämper F, Grimme S, Bach T. Nature 2005; 436: 1139

      For nonfunctionalized amines, see:
    • 10a McNally A, Prier CK, MacMillan DW. C. Science 2011; 334: 1114
    • 10b Ruiz Espelt L, Wiensch EM, Yoon TP. J. Org. Chem. 2013; 78: 4107
    • 10c Zhu S, Das A, Bui L, Zhou H, Curran DP, Rueping M. J. Am. Chem. Soc. 2013; 135: 1823
    • 10d Dai X, Cheng D, Guan B, Mao W, Xu W, Li X. J. Org. Chem. 2014; 79: 7212
    • 10e Dai X, Mao R, Guan B, Xu X, Li X. RSC Adv. 2015; 5: 55290
    • 10f Murphy JJ, Bastida D, Paria S, Fagnoni M, Melchiorre P. Nature 2016; 532: 218

      For silylated amines, see:
    • 11a Miyake Y, Ashida Y, Nakajima K, Nishibayashi Y. Chem. Commun. 2012; 48: 6966
    • 11b Lenhart D, Bach T. Beilstein J. Org. Chem. 2014; 10: 890
    • 11c Ruiz Espelt L, McPherson IS, Wiensch EM, Yoon TP. J. Am. Chem. Soc. 2015; 137: 2452
    • 11d Lenhart D, Bauer A, Pöthig A, Bach T. Chem. Eur. J. 2016; 22: 6519

      Recent reviews:
    • 12a Schultz DM, Yoon TP. Science 2014; 343: 1239176
    • 12b Reckenthäler M, Griesbeck AG. Adv. Synth. Catal. 2013; 355: 2727
    • 12c Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
    • 12d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 12e Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 12f Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
    • 13a Pictet A, Spengler T. Ber. Dtsch. Chem. Ges. 1911; 44: 2030
    • 13b Cox ED, Cook JM. Chem. Rev. 1995; 95: 1797

      Key publications:
    • 14a Rueping M, Zhu S, Koenigs RM. Chem. Commun. 2011; 47: 12709
    • 14b Rueping M, Vila C, Koenigs RM, Poscharny K, Fabry DC. Chem. Commun. 2011; 47: 2360
    • 14c Rueping M, Zhu S, Koenigs RM. Chem. Commun. 2011; 47: 8679
    • 14d Pan Y, Wang S, Kee CW, Dubuisson E, Yang Y, Loh KP, Tan C.-H. Green Chem. 2011; 13: 3341
    • 14e Zhao G, Yang C, Guo L, Sun H, Chen C, Xia W. Chem. Commun. 2012; 48: 2337
    • 14f Freeman DB, Furst L, Condie AG, Stephenson CR. J. Org. Lett. 2012; 14: 94
  • 15 Condie AG, González-Gómez JC, Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
  • 16 Kohl P, Jadhav D, Pandey G, Reiser O. Org. Lett. 2012; 14: 672
  • 17 Liu X, Bureš F, Liu H, Jiang Z. Angew. Chem. Int. Ed. 2015; 54: 11443
  • 18 Nakamura Y, O-kawa K, Minami S, Ogawa T, Tobita S, Nishimura J. J. Org. Chem. 2002; 67: 1247
  • 19 Xue Q, Mao Z, Shi Y, Mao H, Cheng Y, Zhu C. Tetrahedron Lett. 2012; 53: 1851
  • 20 Jeong HC, Lim SH, Cho DW, Kim SH, Mariano PS. Org. Biomol. Chem. 2016; 14: 10502
  • 21 Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewesky A. Coord. Chem. Rev. 1988; 84: 85
  • 22 Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Maillaras GG, Bernhard S. Chem. Mater. 2005; 17: 5712
  • 23 Böhm A, Bach T. Chem. Eur. J. 2016; 22: 15921
  • 24 Cyclization Reaction; General Procedure Substrate (1.00 equiv), Cs2CO3 (1.00 equiv), H2O (1.00 equiv), and photoredox catalyst [Ir{dF(CF3)ppy}(dtbpy)]PF6 [Ir(dF)] (0.05 equiv) were dissolved in dry DMF (ca. 2 mL/0.1 mmol substrate). The yellow mixture was degassed by repeating a freeze-pump-thaw cycle (3×) and irradiated for 14 h with 30 W blue LED lamps (λ = 455 nm) at r.t. whilst continuously stirring under an argon atmosphere. After 14 h, water (ca. 5 mL/0.1 mmol) was added. The layers were separated and the aqueous layer was extracted with diethyl ether (3× ca. 6 mL/0.1 mmol). The combined organic layers were washed with brine and dried with Na2SO4. After filtration, residual solvent was removed under reduced pressure. The crude product was purified by column chromatography to obtain the photoproduct. Representative NMR data (1a): 1H NMR (500 MHz, CDCl3): δ = 7.40–7.34 (m, 2 H, 2× meta-CPh-H), 7.34–7.28 (m, 2 H, 2× ortho-CPh-H), 7.27–7.21 (m, 1 H, para-CPh-H), 7.17–7.07 (m, 3 H, H-6, H-7, H-8), 7.00–6.94 (m, 1 H, H-5), 4.13–3.99 (m, 2 H, CH 2CH3), 3.80 (d, 2 J = 14.9 Hz, 1 H, CHH-1), 3.71 (d, 2 J = 13.1 Hz, 1 H, Ph-CHH), 3.58 (d, 2 J = 13.1 Hz, 1 H, Ph-CHH), 3.42 (d, 2 J = 14.9 Hz, 1 H, CHH-1), 3.38–3.31 (m, 1 H, H-4), 2.88 (dd, 2 J = 16.0 Hz, 3 J = 9.7 Hz, 1 H, CHHCO2Et), 2.80 (ddd, 3 J = 11.7 Hz, 4 J = 3.2, 1.3 Hz, 1 H, CHH-3), 2.61–2.58 (m, 2 H, CHH-3, CHHCO2Et), 1.20 (t, 3 J = 7.1 Hz, 3 H, CH2CH 3). 13C NMR (101 MHz, CDCl3): δ = 172.9 (s, CO2Et), 138.7 (s, CH2-C Ph), 137.6 (s, C-4a), 135.3 (s, C-8a), 129.1 (d, meta-CHPh), 128.4 (d, C-8), 128.4 (d, ortho-CHPh), 127.2 (d, para-CHPh), 126.7 (d, C-6*), 126.5 (d, C-7*), 126.2 (d, C-5), 62.8 (t, CH2-CPh), 60.4 (t, CH 2CH3), 56.5 (t, C-1), 54.7 (t, C-3), 41.2 (t, CH2CO2Et), 35.8 (d, C-4), 14.3 (q, CH2 CH3). * Assignment is interconvertible. Major diastereoisomer (1i): 1H NMR (400 MHz, CDCl3): δ = 7.39–7.36 (m, 2 H, 2× meta-CPh-H), 7.33–7.29 (m, 2 H, 2× ortho-CPh-H), 7.27−7.22 (m, 1 H, para-CPh-H), 7.22–7.13 (m, 4 H, H-5, H-6, H-7, H-8), 4.10 (d, 2 J = 13.6 Hz, 1 H, Ph-CHH), 3.75 (q, 3 J = 6.3 Hz, 1 H, H-1), 3.55 (s, 3 H, CO2CH3), 3.40 (d, 2 J = 13.6 Hz, 1 H, Ph-CHH), 3.26 (dq, 3 J = 9.0 Hz, 3 J = 5.0 Hz, 1 H, H-4), 2.90–2.80 (m, 2 H, CHH-3, CHHCO2CH3), 2.66 (dd, 2 J = 16.0 Hz, 3 J = 5.0 Hz, 1 H, CHHCO2CH3), 2.62–2.56 (m, 1 H, CHH-3), 1.53 (d, 3 J = 6.3 Hz, 3 H, CH3). 13C NMR (101 MHz, CDCl3): δ = 173.2 (s, CO), 140.4 (s, C-8a), 139.6 (s, CH2-C Ph), 137.7 (s, C-4a), 128.9 (d, meta-CHPh), 128.3 (d, ortho-CHPh), 128.1 (d, C-8*), 127.3 (d, C-5*), 127.0 (d, para-CHPh), 126.4 (d, C-6**), 126.1 (d, C-7**), 58.9 (t, CH2-CPh), 57.8 (d, C-1), 51.5 (q, CO2 CH3), 50.9 (t, C-3), 39.9 (t, CH2CO2H3), 35.1 (d, C-4), 21.9 (q, CH3). */** Assignments are interconvertible. Minor diastereoisomer (1i): 1H NMR (400 MHz, CDCl3): δ = 7.39–7.35 (m, 2 H, 2× meta-CPh-H), 7.33–7.28 (m, 2 H, 2× ortho-CPh-H), 7.27–7.22 (m, 1 H, para-CPh-H), 7.17–7.09 (m, 3 H, H-6, H-7, H-8), 7.06–7.00 (m, 1 H, H-5), 4.10 (q, 3 J = 6.6 Hz, 1 H, H-1), 3.83 (d, 2 J = 13.1 Hz, 1 H, Ph-CHH), 3.63 (d, 2 J = 13.1 Hz, 1 H, Ph-CHH), 3.52 (s, 3 H, CO2CH3), 3.23–3.17 (m, 1 H, H-4), 3.00 (d, 2 J = 10.6 Hz, 1 H, CHH-3), 2.88 (dd, 2 J = 16.2 Hz, 3 J = 10.1 Hz, 1 H, CHHCO2CH3), 2.55–2.45 (m, 2 H, CHH-3, CHHCO2CH3), 1.28 (d, 3 J = 6.6 Hz, 3 H, CH3). 13C NMR (101 MHz, CDCl3): δ = 173.5 (s, CO), 141.4 (s, C-8a), 139.4 (s, CH2-C Ph), 137.5 (s, C-4a), 129.2 (d, meta-CHPh), 128.8 (d, C-8), 128.3 (d, ortho-CHPh), 127.4 (d, para-CHPh), 127.0 (d, C-5), 126.4 (d, C-6*), 126.2 (d, C-7*), 58.4 (t, CH2-CPh), 56.0 (d, C-1), 51.5 (q, CO2 CH3), 45.8 (t, C-3), 41.1 (t, CH2CO2CH3), 35.9 (d, C-4), 14.8 (q, CH3). * Assignment is interconvertible.
  • 25 Hoffmann RW. Chem. Rev. 1989; 89: 1841
  • 26 Cooper BE, Owen WJ. J. Organomet. Chem. 1971; 29: 33