Direct C(sp³)–H Activation of Carboxylic Acids

A. Uttry
M. van Gemmeren*
Westfälische Wilhelms-Universität Münster, Germany
Max-Planck-Institut für Chemische Energiekonversion, Germany

Short Review

Pyrylium Salts: Selective Reagents for the Activation of Primary Amino Groups in Organic Synthesis

Y. Pang
D. Moser
J. Cornella*
Max-Planck-Institut für Kohlenforschung, Germany

Short Review
Selective Reduction of Carbonyl Compounds via (Asymmetric) Transfer Hydrogenation on Heterogeneous Catalysts

E. Baráth*
Technische Universität München, Germany

π-Hole Interactions with Various Nitro Compounds Relevant for Medicine: DFT Calculations and Surveys of the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB)

J. M. Hoffmann
A. K. Sadhoe
T. J. Moölbroek*
Universiteit van Amsterdam, The Netherlands

Allylic C–H Alkynylation via Copper-Photocatalyzed Cross-Dehydrogenative Coupling

A. A. Almasalma
E. Mejia*
Leibniz Institute for Catalysis, Germany
Solid-Phase Zincke Reaction for the Synthesis of Peptide-4,4′-bipyridinium Conjugates

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Cortón</td>
<td>Universidade da Coruña, Spain</td>
</tr>
<tr>
<td>P. Novo</td>
<td></td>
</tr>
<tr>
<td>V. López-Sobrado</td>
<td></td>
</tr>
<tr>
<td>M. D. García</td>
<td></td>
</tr>
<tr>
<td>C. Peinador*</td>
<td></td>
</tr>
<tr>
<td>E. Pazos*</td>
<td></td>
</tr>
</tbody>
</table>

Paper

537

Abstract

Solid-phase Zincke reaction of amines with pyridinium salts to afford 4,4′-bipyridinium-peptide conjugates.

Copper-Catalyzed Aerobic Oxidative Alkynylation of 3,4-Dihydroquinoxalin-2-ones

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Rostoll-Berenguer</td>
<td>Universitat de València, Spain</td>
</tr>
<tr>
<td>G. Blay</td>
<td></td>
</tr>
<tr>
<td>J. R. Pedro*</td>
<td></td>
</tr>
<tr>
<td>C. Vila*</td>
<td></td>
</tr>
</tbody>
</table>

Paper

544

Abstract

Copper-catalyzed aerobic oxidative alkynylation of 3,4-dihydroquinoxalin-2-ones using propargylic cyclic amines as key precursors.

Formal [8+3]-Annulation between Azaoxyallyl Cations and Tropones

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. Force</td>
<td>Université Paris-Sud, Université</td>
</tr>
<tr>
<td>A. Pérot</td>
<td>Paris-Saclay, France</td>
</tr>
<tr>
<td>R. Guillot</td>
<td>Institut Polytechnique de Paris,</td>
</tr>
<tr>
<td>V. Gandon*</td>
<td>France</td>
</tr>
<tr>
<td>D. Leboeuf*</td>
<td></td>
</tr>
</tbody>
</table>

Paper

553

Abstract

Formal [8+3]-Annulation between azaoxyallyl cations and tropones through aminocyclization reaction.
Nickel versus Palladium in Cross-Coupling Catalysis: On the Role of Substrate Coordination to Zerovalent Metal Complexes

How do functional groups affect selectivity or inhibit reactions?

Highly Efficient Synthesis of Hindered 3-Azoindoles via Metal-Free C–H Functionalization of Indoles

Highly substituted 3-azoindoles

Recyclable Heterogeneous Palladium-Catalyzed Carbonylative Cyclization of 2-Iodoanilines with Aryl Iodides Leading to 2-Arylbenzoxazinones

Broad substrate scope
Good to excellent yields
Excellent atom economy
High FG compatibility
Recyclable palladium catalyst
A Greener Approach for the Chemoselective Boc Protection of Amines Using Sulfonated Reduced Graphene Oxide as a Catalyst in Metal- and Solvent-Free Conditions

R. Mittal
A. Mishra
S. K. Awasthi*
University of Delhi, India

BF₃·OEt₂-Catalyzed Synthesis of anti-β-(N-Arylamino)-α-hydroxynitriles by Regio- and Diastereospecific Ring Opening of 3-Aryloxirane-2-carbonitriles with Anilines

C. Xu
Y. Lu
K. Xu
J. Xu*
Beijing University of Chemical Technology, P. R. of China

Halogen-Radical-Promoted Dearomative Aza-Spirocyclization of Alkynylimines: An Efficient Approach to 3-Halo-Spirocyclohexa-dienones

D. Chen*
J. Li
Y. Shan*
P. Cui
Y. Zhao
L. Tian
G. Qiu*
Qufu Normal University, P. R. of China
Jiaxing University, P. R. of China
A Green Nanopalladium-Supported Catalyst for the Microwave-Assisted Direct Synthesis of Xanthones

H. S. Steingruber
P. Mendioroz
A. S. Diez
D. C. Gerbino*
Universidad Nacional del Sur, Argentina

short time
operational simplicity
ligand-free
regioselective
broad scope
recovery
very good yields

17 examples
up to 88% yield