Intermolecular Trapping of Alkoxyl Radicals with Alkenes: A New Route to Ether Synthesis

A.-L. Barthelemy
B. Tuccio
E. Magnier
G. Dagousset*
Université de Versailles Saint-Quentin, France

Visible-Light Reductive Cyclization of Nonactivated Alkyl Chlorides

M. Claros
A. Casitas*
J. Lloret-Fillol*
Institute of Chemical Research of Catalonia (ICIQ), Spain
Universitat de Girona, Spain
An Old Dog with New Tricks: Enjoin Wolff–Kishner Reduction for Alcohol Deoxygenation and C–C Bond Formations

C.-J. Li*
J. Huang
X.-J. Dai
H. Wang
N. Chen
W. Wei
H. Zeng
J. Tang
C. Li
D. Zhu
L. Lv
McGill University, Canada

Electrophilic Amination: An Update

Z. Zhou
L. Kürti*
Rice University, USA

Surveying Iron–Organic Framework TAL-1-Derived Materials in Ligandless Heterogeneous Oxidative Catalytic Transformations of Alkylarenes

K. Ping
M. Alam
M. Käärik
J. Leis
N. Kongi
I. Järving
P. Starkov*
Tallinn University of Technology, Estonia
Enantioselective Synthesis of 1-Substituted 1,2,3,4-Tetrahydroisoquinolines through 1,3-Dipolar Cycloaddition by a Chiral Phosphoric Acid

Y. Jin
Y. Honma
H. Morita
M. Miyagawa
T. Akiyama*
Gakushuin University, Japan

Synlett 2019, 30, 1541–1545
DOI: 10.1055/s-0039-1690108

- Enantioselective 1,3-Dipolar Cycloaddition Reaction
- Chiral Phosphoric Acid
- Exo-selective up to 87% ee

Synthesis of New 7,8-Dioxa[6]helicenes with Triazole Rings as Potential Molecular Tweezers

N. Kasabali
H. Gunduz
K. Kaya
V. Kumbaraci*
N. Talinli*
Istanbul Technical University, Turkey

Synlett 2019, 30, 1546–1550
DOI: 10.1055/s-0037-1611879

- NBS
- R = N
- Bn
- CH2

Copper-Catalyzed Twofold Silymetalation of Alkynes

H. Yamagishi
J. Shimokawa*
H. Yorimitsu*
Kyoto University, Japan

Synlett 2019, 30, 1551–1554
DOI: 10.1055/s-0037-1611869

- 11 examples
- 20 to 85%
Isothiourea-Catalysed Sequential Kinetic Resolution of Acyclic (±)-1,2-Diols

S. Harrer
M. D. Greenhalgh
R. M. Neyyappadath
A. D. Smith*
University of St. Andrews, UK

Isothiourea (iPrCO)2O, iPr2NEt
CHCl3, 0 °C

[1R,2R] (1R,2R)

N
N
S

† 1 mol% catalyst

R = aryl, alkenyl, alkynyl

combined yield: 36–49%

44–50%

reinforcement of enantioselectivity

all products highly enantioenriched

Chelation-Based Homologation by Reaction of Organometallic Reagents with O-Alkyl 5-Pyridin-2-yl Thiocarbonates: Synthesis of Esters from Grignard Reagents

S. Usami
T. Suzuki
K. Mano
K. Tanaka, III
Y. Hashimoto
N. Morita
O. Tamura*
Showa Pharmaceutical University, Japan

\[
\begin{align*}
\text{R}^1 &= \text{Bn, tBu or Me; } \text{R}^2 &= \text{aryl, alkenyl or alkynyl group} \\
\text{10 examples from 50% to quant yield}
\end{align*}
\]

Et3N-Promoted Tandem Cyclization of Bromomaleimides with Active Methylene Compounds: An Efficient Synthesis of cis-3,4-Dihydropyrrolidine-2,5-diones

M. Li
Y. Zhu*
H. Wang
W. Chen*
Zhejiang University of Technology, P. R. of China

\[
\begin{align*}
\text{R}^1 &= \text{CH2Ph, Ar} \\
\text{R}^2, \text{R}^3 &= (\text{CH2})_3\text{CO} \\
\text{R}^2 &= \text{CH3, R}^3 &= \text{COMe, COOEt} \\
\text{5 mol% TBAB, Et3N} \\
\text{THF, r.t.}
\end{align*}
\]

\[
\begin{align*}
\text{R}^2 &= \text{Ph, R}^3 &= \text{CN} \\
\text{32 examples} \\
\text{44–84% yield}
\end{align*}
\]

\[
\begin{align*}
\text{R}^1 &= \text{CH2Ph, Ar} \\
\text{R}^2 &= \text{COOC2H5, CN, SO2Ph} \\
\text{25 examples} \\
\text{63–95% yield}
\end{align*}
\]
Hypervalent Iodine Mediated Efficient Solvent-Free Regioselective Halogenation and Thiocyanation of Fused N-Heterocycles

D. R. Indukuri
G. R. Potuganti
M. Alla*
CSIR-Indian Institute of Chemical Technology, India

Letter
1573

Direct Synthesis of 1-Arylprop-1-ynes with Calcium Carbide as an Acetylene Source

L. Gao
Z. Li*
Northwest Normal University, P. R. of China

Letter
1580

Iron-Catalyzed Regioselective Decarboxylative Alkylation of Coumarins and Chromones with Alkyl Diacyl Peroxides

C. Jin*
X. Zhang
B. Sun*
Z. Yan
T. Xu
Zhejiang University of Technology, P. R. of China

Letter
1585
Palladium-Catalyzed Carbonylative Synthesis of Benzogerminones

B. Chen
X.-F. Wu*
Zhejiang Sci-Tech University, P. R. of China
Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Germany

Iron-Catalyzed Direct Transformation of Benzylic Amines into Carbonyl Compounds in Water

M. Minakawa*
T. Sasaki
Yamagata University, Japan

Copper-Catalyzed Carbene Insertion into the Sulfur–Sulfur Bond of RS–SCF₂H/SCF₃ under Mild Conditions

X. Hong
L. Lu*
Q. Shen*
Shanghai Institute of Organic Chemistry, P. R. of China