Key words P. CANAVELLI, S. ISLAM, M. W. POWNER* (UNIVERSITY COLLEGE LONDON, UK) Peptide Ligation by Chemoselective Aminonitrile Coupling in Water Nature **2019**, *571*, 546–549. ## **Sulfide-Mediated Peptide Ligation in Water** ## Ligation cycle: S₈ H₂N CN H-AA-CN Oxidation H₂S H-AA-CN Oxidation hydrolysis NH₂N N ## Synthesis of oligomeric N-acetyl peptides and peptide nitriles by oxidative fragment ligation: | Ac-(AA ¹) _n -SH + | | H-(AA ²) _m -X | $N_3[Fe(CN)_6]$ (75 mW)
D_2O , pD = 9.5 | $Ac\text{-}(AA^1)_n\text{-}(AA^2)_m\text{-}X$ | | |--|--------------------------------------|--------------------------------------|--|---|-----------| | (25 n | nM) X | = CN or OH
(25 mM) | r.t. | | | | $(AA^1)_n$ | H-(AA ²) _m -X | yield (%) | (AA ¹) _n | H-(AA ²) _m -X | yield (%) | | Gly | H-Gly-CN | 71 | Gly ₃ | H-Leu ₃ -OH | 70 | | Gly ₃ | H-Ala ₃ -OH | 65 | Gly ₃ | Phe-Gly ₂ -OH | 74 | | Gly ₃ | Arg-Gly-Asp-OH | 76 | Gly ₃ | Met-Ala-Ser-OH | 75 | | Gly ₃ | H-Gly ₃ -OH | 90 | Gly ₅ | H-Ala ₃ -OH | 74 | | Gly ₃ | H-Gly ₃ -CN | >95 | Gly ₅ | Gly ₂ -His-OH | 80 | ## Synthesis of N-acetyl dipeptides: | Ac-Gly-SH
(50 mM) | · + | H-AA-OH
(150 mM) | $K_3[Fe(CN)_6]$ (150 mM)
H_2O , pH = 9.5
r.t. | Ac-Gly-AA-OH | | |----------------------|-----------|---------------------|---|--------------|-----------| | AA | yield (%) | AA | yield (%) | AA | yield (%) | | Gly | 94 | Asp | 89 | lle | 84 | | Ala | 83 | Gln | 90 | Leu | 86 | | Arg | 88 | Glu | 92 | Met | 95 | | Asn | 81 | His | 95 | Pro | 89 | | Phe | 90 | Ser | 85 | Thr | 81 | **Significance:** This work provides a method for achieving α -peptide ligation in water that tolerates all 20 proteinogenic amino acids. This is extremely important, especially in biochemistry and the life sciences. **Comment:** The authors have developed a method for chemoselective α -aminonitrile ligation in water that uses prebiotically plausible molecules such as hydrogen sulfide, thioacetate, and ferricyanide. The α -peptides are obtained in good to high yields. The model suggests that short *N*-acyl peptides might have served as plausible substrates during the early evolution of life. **SYNFACTS Contributors:** Hisashi Yamamoto, An Wu Synfacts 2019, 15(10), 1201 Published online: 17.09.2019 **DOI:** 10.1055/s-0039-1690638; **Reg-No.**: H08519SF peptide ligation aminonitriles hydrogen sulfide thioacetates ferricyanides aqueous media