Synthesis 2020; 52(05): 660-672
DOI: 10.1055/s-0039-1690780
short review
© Georg Thieme Verlag Stuttgart · New York

Synthetic Approaches to Unsymmetrically Substituted 5,7-Dihydroxycoumarins

Ramil F. Fatykhov
a   Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira 19, 620002 Ekaterinburg, Russian Federation
,
a   Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira 19, 620002 Ekaterinburg, Russian Federation
b   Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Kovalevskoy 22, 620219 Ekaterinburg, Russian Federation   Email: i.a.khalymbadzha@urfu.ru
,
Anna K. Inyutina
a   Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira 19, 620002 Ekaterinburg, Russian Federation
,
a   Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira 19, 620002 Ekaterinburg, Russian Federation
b   Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Kovalevskoy 22, 620219 Ekaterinburg, Russian Federation   Email: i.a.khalymbadzha@urfu.ru
› Author Affiliations
We are grateful to the Russian Science Foundation (project #18-73-00163) for financial support.
Further Information

Publication History

Received: 08 November 2019

Accepted after revision: 29 November 2019

Publication Date:
02 January 2020 (online)


Abstract

The chemical equivalence of the hydroxy groups in the 5,7-dihydroxycoumarin core has challenged synthetic chemists to develop short and efficient strategies for the selective modification of one of the hydroxy groups leaving the second intact. Over the past 100 years, chemists have proposed various approaches to distinguishing between these two groups according to their reactivity. While the early syntheses included simple nonselective reactions of both hydroxy groups and the subsequent separation of mixtures of the 5-O- and 7-O-isomers formed, recent sophisticated approaches often include the introduction of protective groups for selective directing reactions or the completely controlled construction of the 5,7-dihydroxycoumarin framework by Horner–Wadsworth–Emmons reaction. This review discusses in detail approaches towards unsymmetrically substituted 5,7-dihydroxycoumarins as well as factors influencing 5-O vs. 7-O regioselectivity of reactions of 5,7-dihydroxycoumarins. This review covers all the literature since 1921 with an emphasis on recent works. This critical review may facilitate the synthesis of new drug candidates as well as the total synthesis of natural products.

1 Introduction

2 O-Modification of 5,7-Dihydroxycoumarins

2.1 Alkylation/Alkenylation

2.2 Acylation

2.3 Sulfonylation

2.4 Silylation

2.5 Acylation Followed by Alkylation

3 Other Approaches

3.1 Synthesis from Substituted Phloroglucinol

3.2 Synthesis from Derivatives of 2-Acylphloroglucinol

4 Conclusion

 
  • References

    • 1a Murray RD. H. Nat. Prod. Rep. 1995; 12: 477
    • 1b Murray RD. H. Fortschr. Chem. Org. Naturst. 1997; 72: 1
    • 1c Murray RD. H. Fortschr. Chem. Org. Naturst. 2002; 83: 1
    • 1d Srikrishna D, Godugu C, Dubey PK. Mini Rev. Med. Chem. 2018; 18: 113
    • 1e Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A. Molecules 2018; 23: 250
    • 2a Sakunpak A, Matsunami K, Otsuka H, Panichayupakaranant P. Food Chem. 2013; 139: 458
    • 2b Kaur M, Kohli S, Sandhu S, Bansal Y. Anti-Cancer Agents Med. Chem. 2015; 15: 1032
  • 3 Kong Y, Fu Y.-J, Zu Y.-G, Chang F.-R, Chen Y.-H, Liu X.-L, Stelten J, Schiebel H.-M. Food Chem. 2010; 121: 1150
  • 4 McLean M, Dutton MF. Pharmacol. Ther. 1995; 65: 163
  • 5 Galvano F, Ritieni A, Piva G, Pietri A. In The Mycotoxin Blue Book . Diaz DE. Nottingham University Press; Nottingham: 2005: 187
  • 6 Ji HJ, Wang DM, Hu JF, Sun MN, Li G, Li ZP, Wu DH, Liu G, Chen NH. Eur. J. Pharmacol. 2014; 723: 259
  • 7 Ito A, Chai H.-B, Shin YG, Garcia R, Mejia M, Gao Q, Fairchild CR, Lane KE, Menendez AT, Farnsworth NR, Cordell GA, Pezzutoa JM, Kinghorn AD. Tetrahedron 2000; 56: 6401
  • 8 Feng T, Wang R.-R, Cai X.-H, Zheng Y.-T, Luo X.-D. Chem. Pharm. Bull. 2010; 58: 971
  • 9 Ito C, Itoigawa M, Ju-ichi M, Sakamoto N, Tokuda H, Nishino H, Furukawa H. Planta Med. 2005; 71: 84
    • 10a Hönigsmann H, Jaschke E, Gschnait F, Brenner W, Fritsch P, Wolff K. Br. J. Dermatol. 1979; 101: 369
    • 10b Scott BR, Pathak MA, Mohn GR. Mutat. Res. 1976; 39: 29
  • 11 Kostova I. Curr. HIV Res. 2006; 4: 347
    • 12a Xue H, Lu X, Zheng P, Liu L, Han C, Hu J, Liu Z, Ma T, Li Y, Wang L, Chen Z, Liu G. J. Med. Chem. 2010; 53: 1397
    • 12b Xue H, Lu X, Zheng P, Liu L, Han C, Hu J, Liu Z, Ma T, Li Y, Wang L, Chen Z, Liu G. J. Med. Chem. 2008; 51: 1432
  • 13 Zheng P, Somersan-Karakaya S, Lu S, Roberts J, Pingle M, Warrier T, Little D, Guo X, Brickner SJ, Nathan CF, Gold B, Liu G. J. Med. Chem. 2014; 57: 3755
  • 14 Xu Z.-Q, Pupek K, Suling WJ, Enache L, Flavin MT. Bioorg. Med. Chem. 2006; 14: 4610
  • 15 Ahluwalia VK, Seshadri TR, Venkateswarlu P. Indian J. Chem. 1969; 7: 115
  • 16 Fox ME, Lennon IC, Meek G. Tetrahedron Lett. 2002; 43: 2899
  • 17 Zeng X.-L, Fu G.-M, Tian K, Sun J.-X, Xiong H.-B, Huang X.-Z, Jiang Z.-Y. Nat. Prod. Res. 2014; 28: 1364
  • 18 Tian D, Wang F, Duan M, Cao L, Zhang Y, Yao X, Tang J. J. Agric. Food Chem. 2019; 67: 1937
  • 19 Kokubun H. Phytochemistry 1995; 40: 1649
  • 20 Matsumoto T, Takahashi K, Kanayama S, Nakano Y, Imai H, Kibi M, Imahori D, Hasei T, Watanabe T. J. Nat. Med. 2017; 71: 735
  • 21 Kozawa M, Baba K, Matsuyama Y, Hata K. Chem. Pharm. Bull. 1980; 28: 1782
  • 22 Schmid H. Helv. Chim. Acta 1947; 30: 1661
  • 23 Sawhney PL, Seshadri TR. Proc. Natl. Acad. Sci. India, Sect. A 1953; 37: 592
  • 24 Monache GD, Batta B, Vinciguerra V, Gacs-Baitz E. Heterocycles 1989; 29: 355
  • 25 Murray RD. H, Ballantyne MM, Hogg TC, McCabe PH. Tetrahedron 1975; 31: 2960
  • 26 Iannazzo D, Piperno A, Ferlazzo A, Pistone A, Milone C, Lanza M, Cimino F, Speciale A, Trombetta D, Saijad A, Galvagno S. Org. Biomol. Chem. 2012; 10: 1025
    • 27a Wuts PG. M. Greene’s Protective Groups in Organic Synthesis, 5th ed. 2014
    • 27b Jarowicki K, Kocieński P. J. Chem. Soc., Perkin Trans. 1 1999; 1589
    • 27c Sartori G, Ballini R, Bigi F, Bosica G, Maggi R, Righi P. Chem. Rev. 2004; 104: 199
  • 28 Wiemer AJ, Wiemer DF. Top. Curr. Chem. 2015; 360: 115
  • 29 Barnard DL, Xu Z.-Q, Stowell VD, Yuan H, Smee DF, Samy R, Sidwell RW, Nielsen MK, Sun L, Cao H, Li A, Quint C, Deignan J, Crabb J, Flavin MT. Antiviral Chem. Chemother. 2002; 13: 39
  • 30 Flavin MT, Rizzo D, Khilevich A, Kucherenko A, Sheinkman AK, Vilaychack V, Lin L, Chen W, Greenwood EM, Pengsuparp T, Pezzuto JM, Hughes SH, Flavin TM, Cibulski M, Boulanger WA, Shone RL, Xu Z.-Q. J. Med. Chem. 1996; 39: 1303
  • 31 Chin Y.-P, Huang W.-J, Hsu F.-L, Lin Y.-L, Lin M.-H. Arch. Pharm. 2011; 11: 386
  • 32 Fatykhov RF, Khalymbadzha IA, Chupakhin ON, Charushin VN, Inyutina AK, Slepukhin PA, Kartsev VG. Synthesis 2019; 51: 3617
  • 33 Desai RD, Parghi JV. J. Indian Chem. Soc. 1956; 33: 661
  • 34 Liu Z.-J, Guo X.-Y, Liu G. Chin. Chem. Lett. 2016; 27: 51
  • 35 Sun M, Hu J, Song X, Wu D, Kong L, Sun Y, Wang D, Wang Y, Chen N, Liu G. Eur. J. Med. Chem. 2013; 67: 39
  • 36 Wolfrom ML, Koos EW, Bhat HB. J. Org. Chem. 1967; 32: 1058
  • 37 Civitello ER, Rapoport H. J. Org. Chem. 1994; 59: 3775
  • 38 Müller JI, Kusserow K, Hertrampf G, Pavic A, Nikodinovic-Runic J, Gulder TA. M. Org. Biomol. Chem. 2019; 17: 1966
  • 39 Seliger J, Oestreich M. Chem. Eur. J. 2019; 25: 9358
  • 40 Ahluwalia VK, Sachdev GP, Seshadri TR. Indian J. Chem. 1967; 5: 461
  • 41 Rodighiero P, Manzini P, Pastorini G, Guiotto A. J. Heterocycl. Chem. 1981; 18: 4472
  • 42 Salem MA, Helal MH, Gouda MA, Ammar YA, El-Gaby MS. A, Abbas SY. Synth. Commun. 2018; 48: 1534
    • 43a Thomsen I, Torssell KB. G. Acta Chem. Scand. 1991; 45: 539
    • 43b Rezaei-Seresht E, Maleki B, Amiri-Moghaddam Z, Taghizadeh S. Tetrahedron Lett. 2013; 54: 3855
    • 43c Crauste C, Vigor C, Brabet P, Picq M, Lagarde M, Hamel C, Durand T, Vercauteren J. Eur. J. Org. Chem. 2014; 4548
  • 44 Gia O, Anselmo A, Conconi MT, Antonello C, Uriarte E, Caffieri S. J. Med. Chem. 1996; 39: 4489
    • 45a Antonello C, Zagotto G, Miranda R, Uriarte E. Bull. Soc. Chim. Belg. 1994; 103: 651
    • 45b Terán C, Miranda R, Santana L, Teijeira M, Uriarte E. Synthesis 1997; 1384
  • 46 Xie L, Takeuchi Y, Cosentino LM, McPhail AT, Lee K.-H. J. Med. Chem. 2001; 44: 664
  • 47 Khaligh NG, Farhad S. Ultrason. Sonochem. 2013; 20: 26
  • 48 Prajapati D, Gohain M. Catal. Lett. 2007; 119: 59
    • 49a Trost BM, Toste FD. J. Am. Chem. Soc. 1999; 121: 3543
    • 49b Trost BM, Toste FD. J. Am. Chem. Soc. 2003; 125: 3090
  • 50 Brun M.-P, Bischoff L, Garbay C. Angew. Chem. Int. Ed. 2004; 43: 3432
  • 51 Iinuma M, Tanaka T, Hamada K, Mizuno M, Asai F, Reher G, Kraus L. Phytochemistry 1987; 26: 3096
  • 52 Bose P, Banerji J. Phytochemistry 1991; 30: 2438
  • 53 Oda K, Nishizono N, Tamai Y, Yamaguchi Y, Yoshimura T, Wada K, Machida M. Heterocycles 2005; 65: 1985
  • 54 Reisch J, Wickramasinghe A, Kumar V. Monatsh. Chem. 1988; 119: 1333
  • 55 Cao J.-L, Shen S.-L, Yang P, Qu J. Org. Lett. 2013; 15: 3856
  • 56 Dalla VL, Mammi S, Uriarte E, Santana L, Lampronti I, Gambari R, Gia O. J. Med. Chem. 2006; 49: 4317
  • 57 Dalla Via L, Gia O, Caffieri S, García-Argáez AN, Quezada E, Uriarte E. Bioorg. Med. Chem. 2012; 20: 3603
  • 58 Karrer P, Rüdlinger A, Glattfelder A, Waitz L. Helv. Chim. Acta 1921; 4: 718
  • 59 Seshadri TR, Sood MS. Indian J. Chem. 1965; 3: 354
    • 60a Tanaka T, Kumamoto T, Ishikawa T. Tetrahedron Lett. 2000; 41: 10229
    • 60b Sekino E, Kumamoto T, Tanaka T, Ikeda T, Ishikawa T. J. Org. Chem. 2004; 69: 2760
  • 61 Riveiro ME, Maes D, Vázquez R, Vermeulen M, Mangelinckx S, Jacobs J, Debenedetti S, Shayo C, De Kimpe N, Davio C. Bioorg. Med. Chem. 2009; 17: 6547