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Introduction

Atherosclerosis is a chronic inflammatory disease of the
arteries resulting from metabolic dysregulation and a mala-
daptive immune response of the vessel wall. This leads to
atherosclerotic plaque formation with narrowing of the
arterial lumen and plaque rupture causingmyocardial infarc-
tion and stroke. Due to their high prevalence, atherosclero-
sis-related pathologies are nowadays among the most
important diseases worldwide.1 This review focuses on the
biology of macrophages therein.

Origin and Phenotype of Lesional
Macrophages—Moving Targets

Among all leukocytes in the arterial wall, macrophages
account for about 30 to 50% of total CD45þ cells. Their high
abundance already suggests some relevance in the context of
atherosclerosis.2–4 Where do they originate? It has been text
book knowledge for decades that bone marrow (BM)-derived
monocytesextravasateat sitesofatherosclerotic lesionswhere
they differentiate to macrophages and phagocytose-modified
low-density lipoprotein (LDL) particles. However, recent pub-
lications have illustrated a vast heterogeneity within macro-

phage populations, which is at least in part associated with
differences in cell ontogeny, resulting in potentially distinct
functions in atherosclerosis.4–6 Due to comparable morphol-
ogy and similarities in the expression of common phagocyte
markers, an unequivocal identification of these subpopula-
tions has remained challenging and so far required specific
lineage tracing and fate mapping analysis7 (►Fig. 1). By these
means, several studies over the past years have shown that
tissue-resident macrophages originate in relevant amounts
from erythro-myeloid progenitors that arise in the yolk sac
(YS)—an early endodermal embryonic structure.8–10 Shortly
after initiation of YS hematopoiesis, hematopoietic stem cells
(HSCs) are also generated in the dorsal aorta and seed the fetal
liver. At later stages of fetal development, hematopoiesis shifts
to the BM compartment, giving rise to circulating monocytes
and eventually tissue macrophages.6,11,12 In mouse arteries,
macrophages have a mixed origin from fetal and BM hemato-
poiesis.6However, the quantitative contribution in the arterial
wall as well as their response to inflammatory cues, particu-
larly in the process of atherosclerosis, has remained unclear.
Further, potential functional consequences of this observation
have remained unknown.

Due to early lineage specification, macrophages are pro-
vided with tissue-specific signatures already during fetal
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Abstract Atherosclerosis is a prevalent inflammatory condition and a frequent cause of
morbidity and mortality worldwide. Macrophages are among the key immune cells
driving lesion formation in the arterial wall. They have therefore evolved as potential
targets for therapeutic strategies. Understanding of the different macrophage phe-
notypes and functions seems to be of pivotal importance for the development of
treatments to target these immune cells. This review highlights the complexity of the
mononuclear phagocyte system and summarizes important features of macrophage
biology contributing to atherosclerosis.
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development.13 These findings support the notion that
ontogeny contributes not only to macrophage heterogeneity
but also to functional differences of tissue (arterial) macro-
phages. However, the tissue environment continuously
shapes the cellular identity of resident macrophages.14,15

Thus, it is unknown to date whether cell ontogeny has
functional consequences formacrophage biology in later life.

Besides these differences in macrophage origin, also the
phenotypic diversity ofmacrophages within arteries has been
greater than expected. Several pioneering studies recently
identified three to five subsets of macrophages by ribonucleic
acid (RNA) sequencing or mass cytometry.2–4 Wewill discuss
some of the molecular markers in the course of this review.

Monocyte-Derived Macrophage
Recruitment from the Circulation

The process of monocyte recruitment to inflamed arteries is
facilitated by multiple mechanisms and is fundamental to the
process of atherosclerosis.16,17 On the one hand, oxidized LDL
(oxLDL) stimulates the endothelium to express adhesion
molecules, secrete macrophage colony stimulation factor
(M-CSF), as well as granulocyte macrophage (GM)-CSF, and
reduce the synthesis of nitric oxide (NO).18,19 Monocytes, on
the other hand, upregulate the expression of adhesion mole-
cules, mainly involving different heterodimers of β1 integrins,
like very late antigen 4, and β2 integrins, like lymphocyte
function-associated antigen 1 and macrophage-1 antigen
(Mac1)20 (►Fig. 2).

The process of monocyte extravasation starts with P- and
E-selectin-mediated rolling along the endothelium followed
by intercellular cell adhesion molecule-, vascular cell adhe-
sion molecule (VCAM)-, and integrin-dependent firm adhe-
sion.21–23 Subsequent transendothelial migration requires C-
C motif chemokine receptor (CCR) 2 which interacts with
monocyte chemoattractant protein 1 (MCP1/CCL2). Addi-
tionally, CCR5 and CX3C chemokine receptor (CX3CR) 1 are
involved. Therefore, it is not surprising that deficiency of
these receptors has been associated with a significant reduc-
tion in atherosclerosis.24 Within the intimal layer, BM-
derived monocytes differentiate to macrophages under the
influence of M-CSF/GM-CSF, where they proliferate and
sustain the sterile inflammation.25 An additional recruit-
ment of monocytes through plaque-infiltrating blood vessels
from the adventitial side is currently under investigation.
Notably, especially human atherosclerotic plaques are char-
acterized by a dense vascularization26,27 (►Fig. 2).

It is of fundamental importance that not only monocyte-
derived but also resident macrophages in the vascular wall,
which include macrophages of fetal origin, are recruited to
sites of intimal oxLDL accumulation. Being present in the
vessel wall already in steady state, they can proliferate upon
activation to provide an effective machinery for cholesterol
phagocytosis.28,29 As foam cells become increasingly immo-
tile, the inflammatory process is locally enhanced.30

Unfortunately, cellular markers of mononuclear phago-
cytes are often overlapping and make an unequivocal iden-
tification of different macrophage subclasses challenging.

Fig. 1 Diversity of tissue-resident macrophages. Depicted are cellular origins and functional markers as well as stimulatory and secreted
molecules of different macrophage subpopulations.
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This becomes increasingly difficult as vascular smooth mus-
cle cells (VSMCs) and pericyte-like cells display
various degrees of plasticity and can upregulate markers
on their surface that are commonly related to the macro-
phage lineage.31 There is significant evidence of VSMC-to-
macrophage transdifferentiation in vivo, which is associated
with clonal expansion and downregulation of VSMC mar-
kers.32 Further, VSMCs and also endothelial cells are capable
of phagocytosing somemodified LDL particles.33 Recent data
on the transcriptional landscape of aortic macrophages
supports this heterogeneity and points to yet undefined
subpopulations.4 A detailed understanding of the phenotype
and function of all cells contributing to the mononuclear
phagocyte lineage in the arterial wall will be essential for a
precise understanding of atherogenesis and the develop-
ment of targeted therapies.

Adhesion Receptors as Potential
Therapeutic Targets

An obvious approach to limit foam cell formation and devel-
opment of atherosclerotic plaques would be the inhibition of
monocyte/macrophage adhesion and extravasation. In animal
studies, an inhibition of the adhesion receptor VCAM reduced
atherosclerosis.34,35 However, this did not translate well into
humans as demonstrated in the Aggressive Reduction of
InflammationStopsEvents studywhichaimedto reducemajor
cardiac events by a VCAM inhibitor.36,37 In a similar vein,
targeting selectins or integrins was not applicable to humans
as selective therapy for atherosclerosis. Interestingly, thera-
peutic approaches aiming at cytokine-mediated pathways
whichhavebeen linked to certainmacrophagesubpopulations

have shown some promising results. For example, CCR2 is
typically expressed in BM-derived monocytes and is essential
for monocyte extravasation in atherosclerotic lesions. In this
regard, small interfering RNA-mediated silencing of CCR2
reduced monocyte infiltration in atherosclerotic plaques.38

Potentially, a specific treatment of macrophage subpopula-
tions might represent a useful approach to limit atherosclero-
sis while maintaining other macrophage functions.

Macrophage Polarization in the Context of
Atherosclerosis

Macrophages can not only be distinguished by their origin, but
also by their functional differentiation pattern, which is also
referred to asmacrophagepolarization. In analogy toT1andT2
helper cells, macrophages have been classified in M1 and M2
subpopulations. Today, this classification seems to be over-
simplified, since macrophage characteristics vary on a con-
tinuumbetween theclassicalM1andM2phenotypes and they
are significantly influenced by the local microenvironment.
Still, this conventional classification helps to summarize dif-
ferentmacrophage characteristics andmacrophage subclasses
which are nowadays referred to asM1- orM2-like39 (►Fig. 1).

M1-like macrophages are classically activated by tumor
necrosis factor α (TNFα), interferon γ, and lipopolysaccharides
(LPS) as well as other pathogen-associated molecular pattern
(PAMP) and danger-associated molecular pattern (DAMP) sig-
naling cascades. Upon activation, these cells secrete TNFα,
interleukin (IL) 1β, IL6, IL12, IL23, NO, and reactive oxygen
species (ROS) as well as multiple chemokines.40 M1-like
macrophages are characterized by the expression of inducible
NO synthase, Toll-like receptor (TLR) 2 and 4, as well as CD68,

Fig. 2 Macrophages in the context of atherosclerosis. Depicted are major steps during the pathogenesis of atheroscerlosis which involve
macrophages. Key aspects of this review are highlighted in red.
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CD80, andCD86. These characteristics ofM1-likemacrophages
are in line with their predominant role in pathogen defense
including phagocytosis and destruction of foreign bodies as
well as antigen presentation to T cells, triggering an adaptive
immune response41–43 (►Fig. 1).

M2-likealternativelyactivatedmacrophagesarestimulated
mainly by IL4, IL10, and IL13. They are characterized by the
expression of arginase 1 (Arg1), mannose receptor C type 1
(CD206), chitinase-like protein 3 (Chil3, Ym1), Chil4 (Ym2),
and resistin-like alpha (Fizz1) as well as CD86. Arg1 and Fizz1
expression are dependent on signal transducer and transcrip-
tion activator 6 (STAT6) signaling.44Major secretedmolecules
are IL1 receptor antagonist, IL10, transforming growth factor β
(TGFβ), as well as multiple chemokines including C-C motif
chemokine 17 (CCL17), CCL18, CCL22, and CCL24.43 M2-like
macrophages can be further subdivided in several subclasses
with partially overlapping functions. In principle, all M2-like
macrophages are characterized by a rather immunosuppres-
sive phenotype as well as predominant functions in tissue
repair and homeostasis.41–43 M2 polarization has been asso-
ciatedwith expression of the triggering receptor expressed on
myeloid cells-2 (TREM-2).45 In recent studies, using single-cell
RNA sequencing, TREM-2high macrophages were linked to the
population of foamy macrophages4,46 (►Fig. 1).

M1-like macrophages are rather inflammatory and their
appearance is associatedwithhigh-riskplaques,whileM2-like
macrophages seem to be predominantly present in stable
plaques and the adventitia.40,47 Expression of STAT6 has
been described to cause a shift from macrophages with an
inflammatory M1-like to a more stable M2-like phenotype.44

Also, environmental circumstances are capable of influencing
the equilibrium between M1- and M2-like activated macro-
phages since incubation with LDL causes a proinflammatory
shift in macrophage subpopulations.48,49 Kadl et al even
described an entirely new macrophage subpopulation upon
oxLDL exposure in mice—the so-called Mox macrophages.
These cells are proatherogenic and characterized by a
decreased phagocytic and chemotactic capacity in a nuclear
factor like2-dependentmanner.50Moreover, alsoMHbmacro-
phages have been described in atherosclerotic lesions as they
develop upon exposure to the heme products emerging from
intraplaquehemorrhage of infiltrating bloodvessels.51,52They
express high levels of CD163 as well as CD206 and they are
resistant to cholesterol accumulation due to increased expres-
sion of cholesterol efflux receptors like the adenosine tripho-
sphate (ATP)-binding cassette transporters (ABC), ABCA1 and
ABCG1.53 Additionally, heme-dependent macrophage subpo-
pulations have also been associated with efficient phagocyto-
sis of extravasated erythrocytes (erythrophagocytosis).54

In the context of atherosclerosis, another new subpopula-
tion was named M4-like macrophages as their phenotype is
somewhere in between the continuum of M1 and M2
characteristics and since they are stimulated by platelet-
derived CXCL4. They express TNFα, IL6, matrix metallopep-
tidase (MMP) 7, andMMP12 aswell as S100 calcium-binding
protein A8.55,56 Interestingly, the expression of CD163 is
irreversibly lost in these cells leading to a proatherogenic
phenotype and advanced plaque morphology.40,55,57

Novel Approaches to Characterize
Macrophage Subpopulations

The enormous complexity in today’s macrophage popula-
tions have been summarized by specialists in the field in
order to provide a clear overview with all different sub-
classes.58 Several studies now try to specifically address
macrophages subpopulations.59 Moreover, novel transcrip-
tome-based experiments strive to further characterize and
classify these diverse populations2,4,60 (►Fig. 1). Cole et al
identified five different macrophage subpopulations in
atherosclerotic aortas by mass cytometry,2 whereas Cochain
et al distinguish three subpopulations identified by single-
cell RNA sequencing.4 Both groups reported a shift towards
inflammatory monocyte-macrophage populations under
high fat diet.2,4 In a similar approach, using single-cell RNA
sequencing and mass cytometry Winkels et al identified one
macrophage population by RNA sequencing and three popu-
lations bymass cytometry. Interestingly, lymphocyte antigen
6 complex positive inflammatory monocytes seemed to be
decreased in disease, while the populations of macrophages
increased by 110%.3 It is still unclear if infiltrating mono-
cytes, which differentiate to macrophages, or local prolifera-
tion of tissue resident macrophages, is the major trigger for
cell pool expansion.61

All three studies identified a predominant group of
macrophage clusters, which is found under physiological
conditions and usually referred to as resident macrophages.
These cells express high levels of lymphatic vessel endothe-
lial hyaluronic acid receptor 1 (LYVE1)3,4 and CD2062,4when
compared to macrophage clusters in atherosclerotic lesions.
Interestingly, also several previous studies have attributed
these markers to tissue-resident macrophages.6,62,63 M-CSF
1 receptor (CSF1R) has been shown to interact with LYVE1 to
regulate arterial stiffness by controlling collagen expression
in VSMCs.63 Moreover, an inhibition of CSF1R significantly
reduced the number of residentmacrophageswithout affect-
ing monocytes in the blood or aorta.63,64 M-CSF and CSF1R
seem to selectively influence and control tissue-resident
macrophages without affecting inflammatory reactions
mediated by monocytes. This therapeutic approach might
therefore be useful for targeted interventions and is even
discussed for cancer therapies.65

In contrast, macrophage populations in atherosclerotic
lesions are characterized by a shift towards inflammatory
characteristics, whichhave previously been described asM1-
like.2,4 Interesting candidates characterizing these clusters
are CD14, nucleotide oligomerization domain-like receptor
family, pyrin domain containing 3 (NLRP3), and IL1β.2,4

However, the quantitative contribution of expanding resi-
dent macrophages versus infiltrating inflammatory cells
remains unclear, and is even contradictory in the three latest
phenotypical screens as Winkels et al observed a decrease of
inflammatory monocytes in response to western diet, while
the two other studies described an increase of this respective
immune cell population.2–4

Future therapeutic approaches might specifically target
macrophage plasticity and polarization. Markers identified
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by phenotypical clustering using RNA sequencing and mass
cytometry show clear analogies to conventional M1- and
M2-like macrophages.2–4 Potential interventions could be
designed to modulate the shift between M1- and M2-like
polarization states. Further, targeting of specificmacrophage
subpopulations may offer to intervene with lesion formation
and avoiding adverse effects on immunological defense
mechanisms (e.g. against invading pathogens).

Macrophage Immunometabolism—An
Emerging Target

Recent evidence supports the notion that macrophage func-
tions are closely intertwined with their metabolic fea-
tures.66,67 In a simplified perspective, M1-like
macrophages utilize glycolytic metabolism while M2-like
macrophages feature mitochondrial oxidative phosphoryla-
tion and fatty acid metabolism. Consequently, glycolysis
inhibition blocks classical activation of primary monocytes
and monocytic cell lines.68 Thus, specific macrophage effec-
tor functions could be regulated through distinct metabolic
pathways.69 However, drug targeting of metabolic pathways
has been challenging, even in vitro, due to off-target effects
and challenges of dosing.70 Thus, the overlay of immunome-
tabolism with macrophage polarization and function
requires further research.

Initiation of Lesion Formation: Lipid Uptake
Alters Macrophage Functions

Based on the basic concept of plaque development by Ross
and Glomset71 and Goldstein and Brown,72 LDL preferen-
tially enters the endothelium in areas of vascular branches
where endothelial cells partially lose their definite orienta-
tion and barrier structure. Along with turbulent flow and
endothelial dysfunction, these areas are predisposed to LDL
extravasation by passive diffusion through endothelial cell
junctions.73 Apolipoprotein B (ApoB)—the major component
of LDL particles—is linked to matrix proteoglycans in the
intima and mediates the local accumulation of lipids which
are subsequently phagozytosed by macrophages74 (►Fig. 2).
Lipid uptake together with alterations of the tissue micro-
environment imposes significant changes in macrophage
phenotype and functions, representing a major driver of
lesion formation.75 In the following, we will summarize
the process of lipid uptake and its consequences in more
detail.

Macrophages Phagocytose Modified LDL

LDL modifications in the vascular intima most importantly
involve oxidation processes by ROS, metal ions, and local
enzymes like lipoxygenases.76 OxLDL is engulfed by macro-
phages where it accumulates and leads to changes in macro-
phage morphology (foam cells—a central component of
atherosclerotic plaques) and polarization towards an inflam-
matory phenotype75 (►Fig. 2). Therapeutic interventions
addressing LDL oxidation might be promising to reduce

atherosclerosis in the future. For example, lipoxygenase-12
is an enzyme that generates bioactive lipids from different
polyunsaturated fatty acids. Mice deficient in this enzyme
develop significantly less atherosclerotic lesions.77

Beyond its important function in removing LDL from
peripheral tissues, high-density lipoprotein (HDL) inhibits
the process of LDL oxidation via esterases contained in HDL
particles.78,79 Moreover, HDL weakens the proinflammatory
function of mononuclear phagocytes.80 Yet, also proinflam-
matory effects of HDL have been identified as it leads to lipid
raft disruption by passive cholesterol depletion and
increased inflammatory cytokine expression.81

An important defense mechanism conserved between
humans and other species is characterized by the recognition
ofdistinctmolecular structures—so-calledpattern recognition
receptors (PRRs). These PRRs are primarily known for their
ability to recognize pathogens. However, under certain cir-
cumstances like tissue damage, organisms are also required to
phagocytose their own molecular structures—so-called
DAMPs. Heat shock proteins, ATP, high mobility group box 1,
and also oxLDL are important DAMPs triggering macrophage
responses. The uptake of oxLDL particles is mediated by
scavenger receptors with their most prominent representa-
tives being the class B receptor CD36, CD68, lectin-like oxLDL
receptor 1 (LOX1), as well as different class A scavenger
receptors (SR-A).82–85 Interestingly, downregulation of CD36
by the activation of Mac1—an integrin adhesion receptor—
prevents the formation of inflammatory macrophages and
foam cells.86 Beyond macrophages, also endothelial cells and
VSMCs are capable of oxLDL phagocytosis in atherosclerotic
lesions.33 Upon receptor-mediated endocytosis, TLR com-
plexes assemble and enhance nuclear factor κ light chain
enhancer of activated B cells (NFκB) signaling.87,88

Intracellular lipid turnover involves hydrolysis, esterifica-
tion, and efflux. The major mediators of lipid efflux are
ABCA1 and ABCG1.89 Interestingly, large genome-wide asso-
ciation studies have shown that the isoform ABCG8 is asso-
ciated with a decreased risk for atherosclerosis.90 Similar
associations have been identified for ApoE, especially its
isoform ApoE ε2, which is involved in cholesterol removal
and thereby reduces plaque burden.90,91 In macrophages,
accumulating lipids are sensed by liver X receptors (LXRs),
which can reduce scavenger receptor-mediated endocytosis
and enhance cholesterol efflux. By these and others pro-
cesses, LXRs mediate anti-inflammatory effects in mouse
models of atherosclerosis.92,93 In a similar vein, lipophagy—a
special form of autophagy—also reduces lipid accumulation
and prevents the local inflammatory response.94,95However,
intracellular lipid accumulation leads to activation of the
inflammasome complex involving NFκB signaling.95,96 Asso-
ciated proteins like NLRP3 and caspase 1 are upregulated
with subsequent release of major inflammatory mediators
like IL1β and IL18, which in turn induced IL6 and TNFα
production.97 Thus, excessive phagocytosis of modified LDL
particles in atherosclerotic lesions sustains the vascular
inflammatory response in the absence of pathogens—a so-
called sterile inflammation5,98 (►Fig. 2). In addition to
oxLDL, interactions with cholesterol crystals induce an
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inflammatory macrophage phenotype by activation of the
NLRP3 inflammasome, which enhances atherosclerotic
lesion formation.99

It should be noted that lipid metabolism exerts a multi-
tude of effects on the organism, including the hematopoietic
system. Disturbance of cholesterol homeostasis results in a
hematopoietic bias towards proinflammatory monocytes,
which are known to promote atherosclerosis. These effects
can be direct, for example, by affecting cholesterol metabo-
lism in HSCs,100 or indirect by disturbing lipidmetabolism in
tissues that signal to the BM compartment (e.g. adipose
tissue).101 Regarding this exciting topic, please refer to
excellent review articles by Murphy and colleagues.102,103

To reduce the atherosclerotic burden, several steps in the
process of cholesterol extravasation, oxidation, and subse-
quent uptake by macrophages could potentially be harnessed
as therapeutic targets. Today’s prevention strategies primarily
address factors that minimize endothelial dysfunction as a
prerequisite for cholesterol accumulation. Going one step
further in the pathophysiological cascade, oxLDL uptake could
potentially be targeted by the inhibition of scavenger recep-
tors. However, eight different classes of receptors are summar-
ized under the term scavenger receptors and partially
overlapping functions as well as reciprocal compensation
make targeted therapies very challenging.104,105Modification
and genetic deletion of SR-A mostly resulted in reduction of
atherosclerotic lesions83,105 however, also opposite results
have been reported.106 Similarly, studies on CD36 showed
controversial results, especiallywith respect to sex-dependent
differences in mice.85,107 Finally, knockout studies of LOX1
have provided evidence for a reduction in atherosclerosis.
However, genetic deletion was not limited to macrophages
and effected also the endothelium, limiting conclusions
regarding the specific mechanism involved.108,109 Beyond
these partially controversial results, uptake of modified LDL
particles is not limited to scavenger receptors since also acetyl-
CoA acetyltransferase-1, a mitochondrial enzyme that cata-
lyzes acetoacetyl-CoA formation, is involved in this pro-
cess.110–112 Further studies, including parallel targeting of
different scavenger receptors, should enlighten this field in
the future and might eventually provide new therapeutic
approaches.

Resolution of Inflammation: Efferocytosis
Controls the Inflammatory Response

In order to maintain tissue homeostasis, the organism is
capable of removing dead cells in an immunologically silent
form—the so-called efferocytosis (Latin “efferre”: “to bury” or
“to take to the grave”) or programmed cell removal.113,114

Mononuclear phagocytes as well as nonspecialized cells
with phagocytic capabilities like VSMCs or endothelial cells
are capable of efferocytosis.115,116 However, it was reported
that the capacity of efferocytosis in atherosclerotic plaques is
20-fold less in comparison to other tissues.117 Therefore, it is
not surprising that atherosclerosis is a highly active immuno-
logical process in which multiple proinflammatory mediators
includingDAMPsare releasedduring thenecrotic lysisofdying

cells.118 Efferocytosis can be divided in four major steps: First,
“findme” signalshelptoattractcells capableofefferocytosisby
chemotaxis (1). Most important representatives of these “find
me” signals are lysophosphatidylcholine, CX3CL1, sphingosine
1 phosphate, and ATP or uridine triphosphate nucleo-
tides119,120 as well as different alarmins as secreted chemo-
tactic agents.121 Afterwards, different “eat me” and “don’t eat
me” signals trigger the decision of phagocytosis (2) which
requires cellular reorganization for proper engulfment—a
process mainly regulated by small GTPases like Ras homolog
gene family member A, cell division control protein 42, and
Ras-related C3botulinum toxin substrate (3).122Defective “eat
me” signals arehighlyassociatedwith atherosclerotic progres-
sion and represent the most important players in the process
of efferocytosis. Prominent representatives are LDL receptor-
related protein 1, MER proto-oncogene tyrosine kinase
(MerTK), and protein S, among others.123 Finally, engulfed
cells are digested and processed including the release of anti-
inflammatory cytokines (4).

Defects in any of these steps lead to a significant exacer-
bation of atherosclerosis.124,125 Interestingly, also clinically
relevant molecules such as ApoE or HDL turned out to be
positively associated with active efferocytosis and therefore
prevent excessive atherosclerosis.126 In case of insufficient
efferocytosis, a necrotic core within the plaques is formed
whichmaintains an inflammatory response and favors lesion
progression.

A therapeutic approach to modulate efferocytosis could
target the relation between “eat-me” and “don’t eat me”
signals in order to control the inflammatory response by
effective efferocytosis. In this sense, stimulation of MerTK
signaling might prevent plaque progression. For example, in
LDL receptor deficient mice additional deletion of MerTK
causes plaque progression by reduced efferocytosis.127,128

Very similar findings were found in ApoE�/� MerTK�/�

mice.125 MerTK can be cleaved to produce inactive MerTK
and soluble Mer which are both associated with advanced
atherosclerosis.127,129

Current and Future Clinical Interventions

Until today, numerous strategies have been attempted to
reduce and prevent atherosclerosis. Therapeutic approaches
targeted key pathophysiological mechanisms underlying
different steps of lesion formation ranging from LDL regula-
tion and prevention of oxLDL formation, to platelet inhibi-
tion, reduction of monocyte/macrophage recruitment, and
immunosuppressive strategies. However, the large diversity
of mononuclear phagocytes makes targeted interventions
very challenging and we have only begun to unravel the
enormous cellular complexity with respect to origin, polar-
ization, and metabolism in a population which has so far
been regarded as uniform. Moreover, the cellular identity of
macrophages continuously adapts to the tissue of residence
and can be reprogrammed by an altered (inflammatory)
microenvironment.

Most successful in humans was the introduction of
statins and related drugs leading to significant LDL
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reduction as well as potential pleiotropic effects which are
currently under investigation. This treatment limits the
development of atherosclerosis and even reduces all-cause
mortality.130 Other important therapeutic approaches
address smoking, the optimization of blood pressure, or
glucose levels which contribute to endothelial dysfunction.

In an era of increasingly controlled cardiovascular risk
factors, the histological features of vascular injuries are
changing as superficial erosions become more and more
relevant, while plaque rupture events decrease. This patho-
physiological difference will need to be considered in the
development of treatment strategies as discussed in a recent
review by Libby et al.131

Novel therapeutic developments have increasingly
focused on the inflammatory aspect of atherosclerosis.
The CANTOS (Canakinumab Anti-Inflammatory Thrombosis
Outcomes Study) trial investigated canakinumab as a
monoclonal antibody that targets IL1β in the setting of
cardiovascular disease. Interestingly, this medical inter-
vention in humans significantly reduced the rate of cardi-
ovascular events including myocardial infarction.132 A
potential mechanism and the idea behind this treatment
concept was the reduction of inflammatory activity in
atherosclerosis. Similarly, an anti-inflammatory effect of
statins beyond their effect on lowering cholesterol has
been described.133–135 The LoDoCo (Low Dose Colchicine
for Secondary Prevention of Cardiovascular Disease) trial
also provided some evidence that colchicine reduces car-
diovascular events through its anti-inflammatory proper-
ties.136 Interestingly, methotrexate treatment did not
reduce the rate of cardiovascular events.137 Ongoing stu-
dies now address the protective effect of colchicine and
tocilizumab—an antibody against the IL6 receptor—in the
context of atherosclerosis.138

Conclusion

The complexity in the inflammatory process underlying
atherosclerosis has made therapeutic interventions very
challenging. The heterogeneity of macrophage populations,
their differential contribution to distinct stages of lesion
formation, as well as their precise targeting requires further
research. Selective inhibition of proatherosclerotic macro-
phage subsets or a reduction in inflammatory monocyte
recruitment, could potentially reduce the atherosclerotic
burden without affecting basic protective macrophage func-
tions. Beyond the conventional targeting of surface recep-
tors, immunometabolism might serve as an effective switch
to selectively address certain macrophage subpopulations in
dependence of their predominant form of energy supply.
These approaches are likely to provide new perspectives for
the treatment and prevention of lesion formation through
macrophage-directed immunotherapies.
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