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Introduction

Glycans are carbohydrate structures that contain more than
onemonosaccharide unit. Thehuman glycome, the pool of all
mainly extracellular glycans, is a complex, universal, and
dynamic system which confers biological information.1,2

Glycans represent a profile of the condition and environment
of cells which is read and translated into function by glycan-
binding proteins (GBPs). Advanced biochemical tools are at
hand to investigate the pathophysiological role of glycans
which rely in part on their interaction with GBPs. Vascular
glycans regulate the interaction between circulating cells,
plasma components, and endothelial cells, and contain
numerous GBPs. Therefore, alterations in the vascular gly-
come are associated with vascular disease and particularly
the pathogenesis of atherosclerosiswhich is characterized by
endothelial dysregulation, platelet adhesion, leukocyte
recruitment, and accumulation and phagocytosis of lipopro-
teins. Moreover, specific glycan structures and GBPs are
suitable therapeutic targets and agents. This article sum-

marizes their pathophysiological relevance and diagnostic
and therapeutic potential.

The Discovery of Glycans and GBPs

The role of glycans and GBPs in vascular biology has been
known for over a century. Landsteiner described the first
glycan determinants, the blood groups, at the turn of the
century.3 Watkins and Morgan later revealed that glycan
structures create the blood group phenotypes. They were
among the first to describe the presence of glycans on the
cell surface.4,5 The discovery of the ABO system revolutio-
nized transfusion medicine. Recently, genome-wide asso-
ciation studies showed that subjects with specific single-
nucleotide polymorphisms (SNPs) in the ABO gene locus are
at higher risk for coronary artery disease and myocardial
infarction.6,7 In some cases, these SNPs can be linked to a
non-O phenotype.8 Although the reasons for this correla-
tion remain unclear, blood group glycans are also expressed
on platelets and glycoproteins (GPs), and the ABO locus is
associated with platelet function and plasma levels of von
Willebrand factor (VWF) and low-density lipoprotein
(LDL).6–9

Stillmark isolated the first GBP, ricin, the hemagglutinat-
ing component of plant seed extracts.10 When the blood
group specificity of hemagglutinins was discovered, they
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were termed “lectins” (from Latin legere ¼ to read, collect,
select).11,12 In the 1920s, Howell discovered heparin, the
most prominent glycosaminoglycan (GAG) in clinical use.
The resolution of its structure and its first application in the
prophylaxis of venous thrombosis followed in the 1930s. Its
anticoagulant mechanism, that is, the inactivation of factor
Xa and thrombin by interaction with antithrombin, was
described 40 years later.13–15

The aforementioned discoveries suggest a strong link
between the pathophysiological relevance of glycans and
their capacity to bind GBPs.

GBPs Translate Glycan Structures into
Function

The human glycome is built from 10 different monosacchar-
ides: xylose (Xyl), glucose (Glc), galactose (Gal), N-acetylglu-
cosamine and -galactosamine (GlcNAc/GalNAc), mannose
(Man), fucose (Fuc), glucuronic acid (GlcA), enzymatically
transformed to iduronic acid (IdoA), and sialic acid (Neu5Ac).
These monosaccharides are linked via O-glycosidic linkages
in α- or β-anomer conformation by glycosylating enzymes
termed glycosyltransferases. The abundance, activity, and
specificity of these enzymes and of their substrates (acti-
vated monosaccharides) determine the complexity of poly-
saccharides. Glycans are carbohydrate structures which
contain more than one monosaccharide. They may be linear
or branched. They may exist in free form but are mostly
conjugated to lipids as glycosphingolipids or to proteins as
GPs or proteoglycans. The glycan chains are linked to aspar-
agine (N-glycans) or to serine or threonine (generally termed
Ser/Thr-linked which comprise O-glycans and GAG conju-
gates, see below). The glycome is divided intoGAGs and other
glycan determinants. GAGs are linear glycans which consist
of repetitive disaccharide units. They can occur in free form
as nonsulfated hyaluronan (HA) or linked to proteins as
sulfated proteoglycans. The most abundant proteoglycan is
the heparan sulfate (HS) proteoglycan (►Fig. 1). All cell
surface-bound glycoconjugates constitute the glycocalyx
which surrounds every cell in the organism.1,2,16 HA is
considered to be part of the glycocalyx by some authors.17

Glycans can bind GBPs. GBPs comprise sulfated GAG-bind-
ingproteins and lectins. SulfatedGAG-bindingproteinsmainly
interact withnegatively charged sulfate groups alongGAGsvia
clusters of positively charged amino acids. All lectins possess a
carbohydrate recognition domain (CRD)with a binding pocket
exhibiting variable specificity for typically terminal glycan
determinants.18 Proteins which bind to the nonsulfated GAG
HA are classified as lectins because they share conserved
binding modules similar to the lectin CRD (the role of HA
and the binding protein cluster of differentiation [CD] 44
[►Fig. 1] in atherosclerosis will be discussed in the section
“The Glycocalyx: GAGs and GAG-Binding Proteins”).

Apart from their contribution to structural scaffolding in
the extracellularmatrix, only those 7,000 to 8,000 of a trillion
possible combinations of glycans that interact with GBPs are
thought to be physiologically relevant. Therefore, GBPs
provide a link between glycan structure and function.19

Challenges and Opportunities in Analyzing
Glycan Structure and Function

The complexity of glycan structures makes their identifica-
tion and structural and functional analysis difficult, both in
vitro and in vivo. Since glycans are not primary gene pro-
ducts, they cannot be genetically labeled or biochemically
amplified. Redundancy in the biosynthesis of a specific
glycan or embryonic lethality of genetic knockouts renders
mutagenesis studies difficult. Mass spectrometry (MS)-
based approaches allow the identification of glycan
sequences in a crude sample of glycans or glycoconjugates.
However, they provide only limited information on
stereoisomeric conformation and linkages. Nuclearmagnetic

Fig. 1 The role of the endothelial glycocalyx in maintaining vascular
health and its disturbance under proatherogenic conditions. The
endothelial glycocalyx constitutes a sensor of blood shear stress, a
barrier which prevents cells and plasma components from interacting
with the endothelium and a reservoir for glycosaminoglycan (GAG)-
binding proteins. Its constitution is altered by disturbed blood flow,
inflammatory mediators such as IL-1β and TNFα, and hyperlipidemia.
The depiction of pathophysiological processes is simplified. CD44,
cluster of differentiation 44; IL-1β, interleukin 1 β; oxLDL, oxidized
low-density lipoprotein; TNFα, tumor necrosis factor α.
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resonance (NMR) spectroscopy yields a complete three-
dimensional structure of a determinant but requires a sub-
stantial amount of material.20–22

Techniques based on the interaction between glycans and
GBPs, especially lectins, may complement MS and NMR.
Provided that lectinswith appropriateselectivityare available,
the interactionofGBPswith lowamounts of particular glycans
mayallowconclusionsonmanyof their structural features. For
example, microarray analyses are performed by immobilizing
lectins on a surface and incubating them with labeled GPs.
Variations of the technique allow comprehensive glycan pro-
filing of glycoconjugates, live cells, or tissue extracts.23

Overall, these developments show that advanced biochem-
ical tools are at hand to investigate the pathophysiological role
of glycans which rely in part on their interaction with GBPs.

Pathophysiological Relevance of Glycans in
Atherosclerosis

The vasculature senses and integrates distant and local
changes in the condition of the organism and reflects these
changes in part through modifications of endothelial surface
glycans and free glycans shed by the endothelium into the
plasma. Each of the 60 trillion endothelial cells on a surface
area between 4,000 and 7,000 square meters exhibits a
unique and dynamic cellular glycome.24–26 Endothelial pro-
teoglycans protrude into the vessel lumen and cover smaller
cell-bound GPs and glycolipids. Together these components

form the endothelial glycocalyx. It constitutes a sensor of
blood shear stress, a barrier which prevents cells and plasma
components from interacting with the endothelium and a
reservoir for GAG-binding proteins (►Fig. 1).16,17,27,28

Therefore, it regulates the keymechanisms of atheroprogres-
sion: the endothelial dysregulation by disturbed blood flow
and pressure, platelet adhesion to the endothelium preced-
ing leukocyte recruitment and activation, and the accumula-
tion and phagocytosis of lipoproteins (►Fig. 2).27,29–32

Accordingly, an intact glycocalyx protects from atherosclero-
sis.16,17,24,33 Cardiovascular risk factors such as inflamma-
tory cytokines, hyperlipidemia, and hyperglycemia
particularly at sites of disturbed blood flow perturb its
composition (►Fig. 1).34–37 However, specific components
of the glycocalyx may also promote atheroprogression.

The Glycocalyx: GAGs and GAG-Binding
Proteins

HS and the structurally related heparin alone bind to around
450 proteins which are implicated in hemostasis (e.g.,
antithrombin and VWF), inflammation (chemokines and
P/L-selectin), and lipid metabolism (apolipoproteins, LDL-
receptor [LDLR], and lipoprotein lipase).38 The specificity of
their interactions with heparin and HS ranges from non-
specific mostly charge-based to very specific and may vary
with the pattern of sulfation.39,40 Sulfation of endothelial HS
may regulate rolling and arrest of leukocytes on the
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Fig. 2 Glycans and glycan-binding proteins (GBPs) in atheroprogression. The pathogenesis of atherosclerosis is characterized by endothelial
dysregulation, platelet and leukocyte recruitment, the accumulation and phagocytosis of lipoproteins by macrophages and vascular smooth
muscle cells (VSMCs), and thrombosis after plaque rupture. The depiction of pathophysiological processes is simplified. CD44/ESL-1, cluster of
differentiation 44 and E-selectin ligand 1; FVIII, factor VIII; ICAM-1, intercellular adhesion molecule 1; IL-1β, interleukin 1 β; LFA-1/Mac-1,
lymphocyte function-associated antigen 1 and macrophage-1 antigen; LOX-1, lectin-like oxidized low-density lipoprotein receptor-1; Mac-2,
macrophage-2 antigen; oxLDL, oxidized low-density lipoprotein; PSGL-1, P-selectin glycoprotein ligand 1; VWF, von Willebrand factor.
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endothelium at sites of inflammation by modulating L-
selectin binding, and transcytosis and presentation of che-
mokines to their receptors on leukocytes (►Fig. 2, for a more
detailed discussion on the role of selectins see the “C-type
lectins” section).41–46 Heparin and its derivatives may exert
an anti-inflammatory effect by blocking P- and L-selectin
without affecting hemostasis.47 The expression, sulfation,
and degradation of HS is regulated. For example, inflamma-
tory cytokines such as interleukin 1 β (IL-1β) differentially
regulate expression and sulfation of HS in human endothelial
cells in vitro and increase shedding in vivo (►Fig. 1).34,35

Interindividual differences in glycocalyx thickness, basal
turnover, speed and severity of deterioration after insult,
and renal excretion of HS have been suggested.48 These
regulations may affect the capacity of HS to interact with
selectins and chemokines (►Figs. 1 and 2).

HA expressed by endothelial cells in response to proinflam-
matory IL-1β and tumor necrosis factor α (TNFα) has been
shown to mediate the adhesion of monocytes to the endothe-
liumviasimultaneous interactionwith leukocytic andendothe-
lial CD44.49 However, it is unclear whether intraluminal
leukocyte–HA interactions are involved in atheroprogression.

In fact, complete inhibition of HA synthesis increased
atherosclerosis in apolipoprotein E (ApoE)�/� mice on a Wes-
tern diet and thrombosis likely by increased interaction of
monocytes and plateletswith the vascular wall due to reduced
steric hindrance by the glycocalyx.33 HA shedding possibly
induced by hyperglycemia or TNFα was observed in 100
patientswithtype Idiabetescomparedwithhealthycontrols.36

By contrast, partial inhibition of HA synthesis in vascular
smooth muscle cells (VSMCs) induced by IL-1β after mono-
cyte migration into atherosclerotic plaque decreased ather-
osclerosis.50 Interstitial HA expressed by VSMCs fosters

VSMCs migration and VSMCs switching from a contractile
to a synthetic and proliferative phenotype and increases
retention and activation of macrophages in the plaque.51

Furthermore, GAGs may control lipid metabolism. A
reduction of HS and HA surface expression located at
lesion-prone sites in the vasculature and induced by hyper-
lipidemiawas associatedwith increased LDL leakage into the
subendothelium (►Fig. 1).37 By contrast, subendothelial
retention of LDL by direct proteoglycan-binding was critical
for the progression of atherosclerosis (►Fig. 1).52 HS may
also be required for the binding of proprotein convertase
subtilisin/kexin type 9 (PCSK9) to hepatic LDLR which
induces LDLR internalization and degradation and increases
LDL plasma levels (►Fig. 3). Remarkably, it has been sug-
gested that the liver-specific effect of PCSK9may be based on
its selective binding to hepatic HS proteoglycans (►Fig. 3).53

Other Glycan Determinants and Their Lectins

C-Type Lectins
Lectins are subdivided into evolutionary-related families
based on structural similarities. The three major families
of mammalian lectins in vascular biology are C-type, I-type,
and galectins. The C-type constitutes the largest family of
lectins. It comprises selectins, endocytic receptors which
internalize and deliver their ligands to lysosomes, collectins,
and several proteoglycans.

Selectins
Three types of selectins exist: E-selectin (expressed by the
endothelium upon activation), P-selectin (stored in platelet α-
granules and endothelial Weibel–Palade bodies and exposed
upon activation), and L-selectin (constitutively expressed on
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Fig. 3 Glycans and glycan-binding proteins (GBPs) in the hepatic clearance of coagulation factors and platelets and lipid metabolism. Heparan
sulfate (HS) mediates the binding of PCSK9 to the hepatic LDLR which induces LDLR internalization and degradation. The AMR binds VWF, FVIII,
and glycoprotein (GP) Ib-IX-V on platelets and mediates their phagocytosis. CLEC4F and MGL on Kupffer cells are involved in the hepatic clearance
of platelets and VWF, respectively. The depiction of pathophysiological processes is simplified. AMR, Ashwell–Morell receptor; CLEC4F, C-type
lectin domain family 4 member F; FVIII, factor VIII; LDL, low-density lipoprotein; LDLR, low-density lipoprotein receptor; MGL, macrophage
galactose-type lectin; PCSK9, proprotein convertase subtilisin/kexin type 9; VWF, von Willebrand factor.
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leukocytes). Selectins promote capture, rolling, and adhesion
of platelets (P-selectin) and capture and rolling of leukocytes
(E-, P-, and L-selectin) on the endothelium, secondary capture
between freelyflowing and rolling leukocytes (L-selectin), and
between leukocytes andplatelets (P-selectin) in a shear stress-
dependent manner (►Fig. 2).43,54–63 All selectins bind the
sialyl Lex-tetrasaccharide, but differ in their specificity for
variants of the tetrasaccharide at different sites in the vascu-
lature as well as for the GP to which the variants are con-
jugated.60 While P- and L-selectin only bind sialyl Lex

conjugated to P-selectin glycoprotein ligand 1, E-selectin
also binds to CD44, E-selectin ligand 1, and, depending on
cell type and pathophysiological context, CD43 and glycolipid
conjugates (►Fig. 2).58,62 Because of their role in platelet
rollingandadhesionand leukocyte recruitment to thevascular
wall, the impact of P-, E-, and L-selectin on atheroprogression
has been studied extensively.63,64

The Ashwell–Morell Receptor
Furthermore, the hepatic Ashwell–Morell receptor (AMR), an
endocytic C-type lectin, is expressed on hepatocytes and
specifically recognizes terminal Gal and GalNAc residues.
The AMR binds VWF (defect or deficiency leads to von
Willebrand disease, the most common inherited bleeding
disorder), factor VIII (FVIII, defect or deficiency leads to
hemophilia A), and the GPIb-IX-V on platelets via N-glycans
which expose Gal residues due to deficiency in terminal
Neu5Ac and mediates their phagocytosis (►Fig. 3).65–68 In
line with these findings, platelets from mice deficient in the
Neu5Ac-adding sialyltransferase ST3Gal-IV are removed
from the circulation.66–68 A role for two other endocytic C-
type lectins, the C-type lectin domain family 4member F and
macrophage galactose-type lectin, expressed on Kupffer
cells, liver-resident macrophages, in the hepatic clearance
of platelets, and VWF expressing desialylated O-glycans,
respectively, has recently been suggested (►Fig. 3).69,70

Interestingly, a loss of function mutation in the main
component of the AMR was associated with lowering of
LDL plasma levels and a reduced risk for coronary artery
disease in an Icelandic case–control study with 269,344
participants. The authors suggest that the AMR may interact
with a desialylated form of the LDLR and mediate its LDL-
independent internalization producing an increase in LDL
plasma levels.71 Moreover, it has been shown that hypersia-
lylated LDLRs internalize LDL more effectively andmicewith
a deficiency in Neu5Ac-removing sialidase exhibit lower LDL
plasma levels.72 Sialylation of LDL affected its uptake by
macrophages.73 Notably, a SNP in the ST3Gal-IV gene was
associated with increased LDL plasma levels in 95,454
patients.7 Recently, small interfering ribonucleic acid which
downregulates PCSK9 in patients with elevated LDL choles-
terol, was conjugated to GalNAc to specifically bind the
hepatic AMR to reduce doses and side effects.74,75

Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1
and Mannose-Binding Lectin
Several other endocytic C-type lectins are implicated in ather-
osclerosis. Although the role of glycans in their actions has not

been investigated or they exert their function in a glycan-
independent manner, lectin-like oxidized low-density lipo-
protein receptor-1 (LOX-1) andmannose-binding lectin (MBL)
will be briefly discussed. LOX-1 serves as a scavenger receptor
for oxidized LDL (oxLDL) on endothelial cells (►Fig. 2). The
uptake of oxLDL is atherogenic as it leads to upregulation of
adhesion receptors and chemokines (►Fig. 2). LOX-1 also
mediates the uptake of oxLDL by platelets, macrophages, and
VSMCs (►Fig. 2).76,77 The uptake of oxLDL by platelets has
recently beenshownto induce theexpressionof P-selectinand
the activation of αIIbβ3 integrin on platelets (►Fig. 2) and
chemokine release.78 Plasma levels of shedded LOX-1 had a
higher sensitivity in the diagnosis of an acute coronary syn-
drome than troponin T or high-sensitivity C-reactive protein
and may potentially even predict it.79

MBL, a member of the collectin subfamily of C-type
lectins, is expressed in human atherosclerotic plaque but
not in healthy vascular tissue and may exert an atheropro-
tective effect, potentially by supporting the clearance of
apoptotic cells by macrophages.80 In a case–control study
with 1,309 participants, MBL plasma levels were found to
correlate with the risk of myocardial infarction in patients
with diabetes or hypercholesterolemia. The authors discov-
ered that MBL binds oxLDL and suggested that it may
mediate its noninflammatory clearance.81

I-Type Lectins
I-type lectins belong to the immunoglobulin superfamily.
Among I-type lectins, siglecs which bind sialic acid are the
best characterized subgroup. Other I-type lectins, such as the
intercellular adhesion molecule 1 (ICAM-1), exhibit varying
sugar-binding specificities and are less well characterized .82

The glycan-dependency of the function of I-type lectins is
unclear.

ICAM-1 mediates the adhesion of platelets and the arrest
of leukocytes on the endothelium by interacting with plate-
let αIIbβ3 via fibrinogen as bridging molecule or lymphocyte
function associated antigen 1 (LFA-1) and macrophage-1
antigen (Mac-1) integrins (►Fig. 2).25,41,55,83

Siglec-1 is expressed in atherosclerotic plaques from
ApoE�/� mice on a Western diet.84 Siglec-1 knockdown
reduced atherosclerotic plaque formation, macrophage accu-
mulation inplaque, and cytokineexpressionbyatherosclerotic
plaque, and by endothelial cells. Furthermore, oxLDL uptake
and subsequent cytokine secretion by macrophages in vitro
was mediated by Siglec-1.84,85 Siglec-1 expression in blood
monocytes was significantly higher in patients with coronary
artery disease compared with healthy controls.86 A higher
expression of Siglec-3 in classical monocytes correlatedwith a
higher uptake of acetylated LDL particles.87

Galectins
Galectins share sequence homology in their CRDs and bind-
ing affinity for β-galactose-containing glycoconjugates.
Three different types exist in humans: the prototype which
consists of a single CRD, the chimera-type galectin-3 (Gal-3)
that contains a CRD and an N-terminal tail, and the tandem-
repeat typewhich comprises two CRDs connected bya linker.
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Galectins may form noncovalently bound homo- or hetero-
oligomers.88,89 Galectins play a prominent role in athero-
sclerosis by regulating coagulation factors, activating
platelets, affecting leukocyte adhesion and migration, and
the phagocytosis of LDL. They differ in their affinity for
specific glycans.90

On the one hand, galectin-1 (Gal-1) and Gal-3 exhibit
anticoagulant effects by interacting with N-glycans on VWF
and preventing the formation of VWF bundles on the
endothelium which interact with platelets via GPIb-IX-V to
promote thrombosis (►Fig. 2).55,91 As a result, Gal-1�/�/Gal-
3�/� mice show more arterial thrombi.91 Gal-1 binds to N-
glycans on FVIII associatedwith VWF and reduces its activity
(►Fig. 2). The authors speculate that Gal-1 may modulate
FVIII plasma levels bymediating its endocytosis in the liver.92

On the other hand, Gal-1 induces P-selectin expression and
aggregation of platelets by binding to the integrin αIIbβ3 in a
glycan-dependent manner (►Fig. 2).93,94 The aggregation of
platelets and interaction of platelets with the endothelium is
induced by the upregulation of αIIbβ3. Integrin αIIbβ3
interacts with other platelet αIIbβ3 and endothelial ICAM-
1 via fibrinogen (►Fig. 2). Fibrinogen also mediates the
interaction of platelet αIIbβ3 with the endothelial integrin
αVβ3 (not shown).55,95 Furthermore, it has been demon-
strated that platelet αIIbβ3 interacts with endothelial GPIb-
IX-V and αVβ3 via VWF and with endothelial αVβ3 via
fibronectin (not shown). Fibrinogen, VWF, and fibronectin
are expressed by platelets and released upon activation.55,95

Platelet adhesion to the endothelium and platelet aggrega-
tion induce platelet activation and endothelial activation by
platelet IL-1β and upregulation of adhesion receptors and
release of chemokines in both cell types (►Fig. 2).32,54

The effect of Gal-8 is more consistent. It induces the
endothelial expression of VWF and promotes platelet adhe-
sion to the endothelium (►Fig. 2).96 It also fosters P-selectin
expression and platelet aggregation by binding platelet GPIb-
IX-V in a glycan-dependent manner (►Fig. 2).97

The best characterized galectin in atherosclerosis is Gal-3
(Mac-2). Monocytes strongly upregulate Gal-3 when they
differentiate into macrophages which accumulate in mouse
and human atherosclerotic plaques.98–100 Gal-3 mediates the
uptake of oxLDL, and oxLDL increases Gal-3 expression
(►Fig. 2).101,102 It has also been shown that VSMCs upregulate
Gal-3 after cholesterol uptake and transdifferentiation into a
macrophage-like phenotype (►Fig. 2).103 Moreover, Gal-3
may attract monocytes either directly or by inducing the
expression of chemokines in a glycan-dependent manner
(►Fig. 2).98,99 Gal-3�/�/ApoE�/� mice and ApoE�/� mice trea-
ted with a glycan to block the Gal-3 CRD exhibit less athero-
sclerotic lesions and inflammatory plaque infiltrates.98,104

Therapeutic Potential of Glycans and GBPs in
Atherosclerosis

The implication of glycans and GBPs in the pathophysiology
of atherosclerosis raises interesting therapeutic and diag-
nostic opportunities. For example, synthetic heparins andHS
with specific anti-inflammatory, anticoagulant, or lipid-low-

ering capacitiesmay be customized for the individual patient
and the disease state. This approachmay limit unwanted side
effects or conversely exploit the manifold potential of hepar-
ins. Detection of specific variants of endogenous HS in
plasmamay prove useful for the assessment of the condition
of the vascular system.48

Furthermore, biological or synthetic lectins may specifi-
cally bind a particular glycan and prevent it from interacting
with its receptor. Moreover, the possibility to specifically
target the liver with a compound conjugated to a simple
monosaccharide is intriguing.74,75 The approach may be
applied to reach other organs. The analysis of the glycosyla-
tion profile of GPs, platelets, or LDL particles for diagnostic
purposes seems promising.

Biological and synthetic lectins may lend themselves as
therapeutics. Galectins for example may be used to specifi-
cally target thrombosis or serve as an intermediary between
a pharmaceutical and its target. One may also block the CRD
of galectins and other lectins with metabolically inert gly-
cans to interfere with their function. Lectins may also serve
as biomarkers.79

Exploiting these targets may address so far underappre-
ciatedpathwaysand limit sideeffectsofpharmaceuticalswhich
result from their insufficient specificity to diseased tissue.

Conclusion

Glycans and GBPs constitute a complex and often highly
specific system. This system is accessible to analytical techni-
ques which rely in part on their interaction. Both glycans and
their binding partners are heavily involved in keymechanisms
of the pathogenesis of atherosclerosis, thrombosis, leukocyte
adhesion and migration, and lipid metabolism. Activated
monosaccharides ormore complex glycan determinants, ther-
apeutics conjugated to monosaccharides, or lectins may be
used to specifically prevent or inhibit the development of the
disease. The analysis of altered glycan structures on GPs,
platelets, LDL particles, or differently expressed lectins may
serve diagnostic purposes. With the exception of heparin and
its derivatives, very few glycan-based compounds have
reached the market. The glycome therefore represents a
promising and underappreciated tool and target for future
pharmaceutical developments in atherosclerosis.
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