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Abstract Neonatal seizures are the most prevalent and distinctive sign of neurologic dysfunction in
early life and pose an immense challenge for clinicians. Improvements in neonatal care have
increased the survival rate of extremely premature infants, considerably changing the
spectrum of underlying etiologies, and instigating a gradual shift from mortality to
morbidity. Recognizing neonatal seizures can be challenging due to variability in presenta-
tion but clinical features canoften provide valuable clues about etiology. Yet, themajority of
neonatal seizures are subclinical. Even though conventional electroencephalography (EEG)
with simultaneous video detection of seizures still represents the diagnostic gold standard,
continuous monitoring using a one- to two-channel amplitude-integrated EEG with
concurrent unprocessed EEG can be crucial for early recognition and intervention. Further-
more, tremendous progress has been made in neuroimaging, and all infants with seizures
should have a magnetic resonance imaging (MRI) to help identify the underlying etiology.
While the majority of neonatal seizures are caused by hypoxic-ischemic events, stroke,
hemorrhage, or infection, approximately 15% of patients will require more sophisticated
algorithms for diagnostic workup, includingmetabolic and genetic screening. These recent
developments have led to renew interest in the classificationofneonatal seizures,which aim
to help identify etiology and guide appropriate therapeutic and prognostic decisions. In this
review, we outline recent progress made in the etiology, diagnosis, and treatment of
neonatal seizures and highlight areas that deserve further research.
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Introduction

Seizure incidence is higher during the neonatal period than at
anyother timeof life.1Neonatal seizures are themostcommon
neurological emergency and are associated with a high risk of
mortality and morbidity.2–4 Neonatal seizures occur in 1 to 3
per 1,000 live births,5–8 with substantially higher rates
reported in premature neonates.9 Improvements in neonatal
care over the last few decades have changed the spectrum of
injury seen in the immature brain and have facilitated a
decrease in mortality following neonatal seizures. However,
the prevalence of long-term morbidity in survivors remains
unchanged.10,11

Neonatal seizures are unique, as the majority is symptom-
aticofbrain injuryoccurring acutely in theperinatal period and
onlyapproximately 15% are related to anepilepsy syndrome, in
stark contrast to seizures presenting later in infancy and
childhood. Hypoxic-ischemic encephalopathy (HIE) in term
neonates and intraventricular hemorrhage (IVH) in premature
neonates are the most prevalent etiology. Other common
causes are cerebral infarction, central nervous system (CNS)
infection, brain malformation, or metabolic disorders.11

In the past decade, tremendous progress has beenmade in
the area of neonatal seizure detection and etiological classi-
fication using continuous neuromonitoring and advanced
neuroimaging, in addition to clinical observation. Challenges
in diagnostics have been met with the development of
metabolic, as well as genetic, screening which carries the
potential for rapid diagnosis and novel treatment options. In
spite of increasing awareness about neonatal seizures and
their dire consequences, including the high prevalence of
cerebral palsy, developmental delay and postneonatal epi-
lepsy, little progress has been made in the development of
effective treatments. Randomized controlled trials have nev-
er been more urgent.

In this review, we highlight key areas of neonatal seizure
diagnosis and treatment and identify the most imperative
questions that still remain unanswered.

Classification of Neonatal Seizures

Neonatal seizures are often electrographic only (subclinical)
or showingdiscreet clinicalmanifestations that canbedifficult
to differentiate frommovements seen in sick preterm or term
neonates.12,13 Hence, the need for electroencephalography
(EEG) confirmationof neonatal seizures iswidelyaccepted.6,12

However, this issue hinders the integration of neonatal seiz-
ures into a classification scheme serving all ages, which is
reflected by the fact that, until recently, the International
League Against Epilepsy (ILAE) seizure classification did not
include neonatal seizures.14,15 It is not surprising, therefore,
that other classifications have been published by neonatolo-
gists and pediatric neurologists which are unique to the
neonatal period.13,16 However, these were based merely on
clinical semiology,16 neglected electrographic-only seizures,16

and included both epileptic and nonepileptic events.13,16

In 2014, a new taskforce on neonatal seizures was estab-
lished by the ILAE (International League against Epilepsy–

Commission for terminology and classification). This taskforce
has recently proposed a diagnostic framework based on the
Mizrahi classification of neonatal seizures and the 2017 ILAE
seizure classification,17,18 which consists of four domains:
clinical presentation (high-risk or clinical suspicious events),
diagnosis (with EEG), manifestation (with or without clinical
manifestation), and seizure types with clinical signs (motor:
automatisms, clonic, epileptic spasms, myoclonic, sequential,
and tonic; non-motor: autonomic and behavioral arrest; and
unclassified) or without clinical signs (electrographic only).
This new classification, yet to be finalized, is expected to
augment the diagnostic value of seizure semiology
with respect to etiology and outcome of neonatal seizures.
However, this novel frameworkwill need to be tested on larger
datasets to assert its applicability and validity.

Building a seizure classification tailored on neonatal age
with detailed clinical-semiology features and characteriza-
tion of specific electroclinical patterns will be the corner-
stone in determining the etiology and, thus, the appropriate
treatment in each neonate.

Does Seizure Semiology Reveal Seizure
Etiology?

Recognizing seizures in the neonatal period can be challenging
due tovariability in their presentation.19,20Prematureneonates
or those with severe encephalopathy are more likely to have
electrographic-only seizures, particularly when antiseizure,
sedative, or paralytic medications are administered. Clinical
suspicion should be invariably verifiedbyEEG recording,where
possible, before treatment initiation.

Awide range of underlying causes gives rise to seizures in
neonates but it should be noted that themajority of neonatal
seizures is acute symptomatic21 and only approximately 15%
of neonates have epilepsy as their seizure etiology. Despite
the inherent complexity in this long list of causes, the timing
and semiology of neonatal seizures can suggest the underly-
ing etiology and help guide appropriate treatment options.

The timing of seizure onset provides the first indication of
seizure etiology. HIE accounts for 60 to 65% of acute symp-
tomatic neonatal seizures occurring in the first day of life,
andmost cases are evidenced by a complicated birth history.
Neonatal seizures occurring up to 72 hours after birth are
predominantly acute symptomatic, and may be associated
with stroke or brain malformations, bacterial meningitis,
intrauterine infection, IVH in preterm neonates, drug
withdrawal, and metabolic disorders. Neonatal seizures
occurring toward the end of thefirst weekof life in otherwise
healthy neonates with a family history of neonatal seizures
may point to a genetic disorder; in particular to a self-
limiting familial neonatal epilepsy.22–25 Pathogenic variants
in two potassium channel subunit genes are associated with
this epilepsy syndrome. Potassium voltage-gated channel
subfamily KQT member 2 (KCNQ2) pathogenic variants are
the most common, whereas KCNQ3 pathogenic variants are
rare.22,26,27 Most patients with KCNQ2 pathogenic
variants reach seizure freedom within the first year of life
and remain seizure-free thereafter, but present with
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moderate-to-severe developmental delay at follow-up.28

Another autosomal dominant epilepsy syndrome presenting
with neonatal seizures is the self-limiting familial neonatal-
infantile epilepsy, associated with pathogenic variants in the
sodium channel subunit gene SCN2A.29,30 Seizure onset in
this disorder varies and seizures can start in the neonatal, as
well as in the infantile period, whereas they generally stop by
12months of age.22 Seizures in self-limiting familial neonatal
or neonatal-infantile epilepsy, as recently characterized in a
large cohort,maybe focal or generalized clonic or tonic, often
associated with apnoea, head or eye deviation, or staring.22

Seizure semiology can provide valuable evidence regarding
seizure etiology. True myoclonic seizures should raise suspi-
cions of a metabolic disorder such as nonketotic hyperglyci-
nemia (NKH), propionic acidaemia, and vitaminB6-dependent
epilepsy.31–33 Focal clonic seizures point to a focal cortical
lesion, such as stroke, intracranial hemorrhage, and focal
cortical dysplasia.13,34,35 Infants with tonic seizures should
besuspected tohaveageneticepilepsy syndrome(KCNQ2,PEX,
ARX, CDKL5, SPTAN, STXBP1-related epilepsy, etc.) if the clinical
history does not suggest a cortical malformation or an acute
symptomatic etiology. Tonic seizures, evolving sequentially to
encompass a sequence of a tonic followed by a myoclonic or
clonic phase, are a hallmark of KCNQ2-related epilepsy, the
most common genetic disorder associated with neonatal
epilepsy.36–38 Epileptic spasms in neonates are rare, mostly
found in metabolic disorders, such as vitamin B6 dependent
epilepsy that may present with sequential seizures encom-
passing spasms.25,39 However, epileptic spasms can also be
caused by cortical malformations or early-onset epileptic
encephalopathy.40Nearly, all seizure typeshavebeen reported
in neonates with HIE but a large proportion will be electro-
graphic only.13,41

Overall, the variability of seizure types and the extensive
list of etiologies pose a tremendous challenge to the diag-
nostic skills of even the most experienced clinicians. Yet,
clinical features in neonatal seizures have the potential to
help reveal the underlying etiology, particularly in centers
with limited resources, where recommended diagnostic
tools may be unavailable, facilitating the prompt implemen-
tation of a suitable treatment and, thus, improving outcomes.

Advances in genomic technologies are expected to disclose
many other pathogenic variants associated with neonatal
seizures. Furthermore, the introduction of the expanded new-
born screening formetabolic disorders is boundto increase the
rate of early etiologic diagnosis. These advances will serve to
guide the appropriate management of neonatal seizures and
thus improve their outcome.

Ictal and Interictal Electroencephalography
Themajority of neonatal seizures are subclinical and thus best
identified by their EEG signatures. An electrographic seizure is
a sudden, abnormal EEG event defined by a repetitive, and
evolving pattern with a voltage of > 2 μV and a duration
of > 10 sec.42 “Evolving” is defined as an unequivocal evolu-
tion in frequency, voltage,morphology, or location. An interval
of at least 10 seconds is required to separate two distinct
seizures.42Nevertheless, cut-offs are arbitrary, and exceptions

to the rule may occur. For example, epileptic generalized
myoclonic jerks are associated with discharges of < 10 sec-
ondsofduration. Brief rhythmicdischargesof < 10 seconds of
duration without clinical symptoms are considered nonictal,
although they can have the same characteristics and bear the
same risk for mortality and neurologic disability as electro-
graphic seizures.43 Other critical aspects are the demarcation
of the onset and the end of the ictal discharge from interictal
activity and the differentiation of seizures from seizure-like
artifacts, physiological or pathological nonictal rhythmic
patterns, or periodic patterns.44

Electrographic seizures can be as follows:

• Unifocal: multiple seizures arise from a single region
(►Figs. 1, 2).

• Multifocal: seizures originate from at least three indepen-
dent foci with at least one in each hemisphere.

• Lateralized: seizures propagatewithin a single hemisphere.
• Bilateral independent: seizures occur simultaneously in

two regions and begin, evolve, and behave independently.
• Bilateral: involvement of both hemispheres (►Fig. 3).
• Migrating: the seizuremoves sequentially from one hemi-

sphere to another.
• Diffuse: asynchronous involvement of all brain regions.

The morphology of ictal discharges consists of rhythmic
spikes, sharp-waves, or rhythmic β, α, theta, or delta waves.
In preterm neonates, rhythmic delta waves are the most
common ictal pattern.45 Focal clonic or focal tonic seizures
exhibit focal EEG discharges, while generalized myoclonic
jerks are associated with generalized bursts.13 Ictal EEGs are
often focal in origin, while not necessarily corresponding to
an underlying focal pathology.13,46,47 Status epilepticus is
diagnosedwhen the summed duration of seizures comprises
� 50% of an arbitrarily defined 1-hour epoch.42

Backgroundpatterns in neonatal EEG provide a particularly
valuableassessmentofcerebral functioning followingavariety
of insults. A normal background pattern in an infant with
unremarkable neurological examination and motor seizures
may suggest self-limiting familial neonatal epilepsy.22,23

So-calledperiodicpatterns are of uncertain significance. These
are described as relatively uniform patterns with waveforms
recurring at almost regular intervalswithoutevolution, lasting
> 10 seconds, presenting different morphologies, and focal,
bilateral synchronous, bilateral asynchronous, or diffuse
localizations.42

An interictal burst-suppression pattern is a characteristic
pattern of early-onset epileptic encephalopathy with onset
in the first month of life, that is, Ohtahara’s syndrome, or
early infantile epileptic encephalopathy, and earlymyoclonic
encephalopathy.48–51 Tonic seizures are the predominant
seizure type in Ohtahara’s syndrome, whereas myoclonic
seizures are the predominant seizure type in earlymyoclonic
encephalopathy. These epileptic encephalopathies were
recently considered part of a spectrum, with a considerable
overlap in clinical presentation and etiology.52 Known
genetic causes of Ohtahara’s syndrome and early myoclonic
encephalopathy include brain malformations (e.g., polymi-
crogyria and lissencephaly), inborn errors of metabolism
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Fig. 2 Term neonate age 1 day, hypoxic-ischemic encephalopathy, focal clonic seizures involving the left arm and oral automatisms. The EEG
seizure starts with rhythmic delta waves. EEG, electroencephalography.

Fig. 3 Term neonate age 10 days, STXBP1 encephalopathy, bilateral clonic seizures involving both arms and legs. The EEG seizure starts with
bilateral amplitude reduction followed by bilateral parasagittal and generalized rhythmic spike waves with centromedian maximum.

Fig. 1 Term neonate age 2 days, hypoxic-ischemic encephalopathy, focal clonic seizures involving the left arm and the left leg. The EEG seizure
starts with rhythmic α waves evolving into irregular sharp theta waves and after 15 seconds (not shown) in rhythmic sharp waves. ECG,
echocardiogram; EEG, electroencephalography.
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(e.g., pyridoxine- and other vitamin-dependent epilepsies,
mitochondrial disorders, and amino acidopathies), and other
genetic etiologies (e.g., pathogenic variants in ARX, GABRA1,
KCNQ2, KCNT1, SCN2A, SIK1, SLC25A22, and STXBP1).36,53–59

Overall, single gene variants underlie 20 to 40% of epileptic
encephalopathies,60–63 with genetic testing reaching a yield
of 83% in a recent study.21 The identification of these genetic
etiologies may prove crucial for patients with early-onset
refractory epilepsy who may profit from gene-based treat-
ments in light of emerging precision medicine.64

Long-term video-EEG monitoring in encephalopathic
neonates, as well as in severely ill preterm neonates, will
help to identify subtle seizures and initiate their prompt
treatment, thus facilitating a better prognosis. Definition of
distinct electroclinical phenotypes will delineate genetic
encephalopathy and specific etiology-related syndromes,
avoiding unnecessary testing and indicating specific thera-
peutic management.

Amplitude-Integrated Electroencephalography in
Seizure Monitoring
While full video-EEG, difficult to implement on a 24/7 basis
in nonexpert centers, remains the gold standard for neuro-
physiological monitoring, amplitude-integrated EEG (aEEG),
displaying a time-compressed, one-or two-channel trend of
the EEG, is increasingly utilized for long-term monitoring
and continuous surveillance in the neonatal intensive care
unit (NICU). This simplified monitoring enables the assess-
ment of the background activity and facilitates the earlier
recognition of state changes, although abnormal findings
(especially suspected seizures) eventually require further
investigation by more detailed full EEG.

Previous literature has shown an 80% correlation of
seizure detection by aEEG compared with full EEG65

when used by aEEG experts, underlining that although
aEEG has a lower sensitivity than full EEG, aEEG-based
seizure diagnosis is much more reliable than clinical diag-

nosis alone.66,67 When nonexperts assessed the aEEG,
results were, however, much poorer.68 Seizures are more
common over central cerebral regions and, if EEG electrodes
cover this area, neonatal seizures can be identified in 70 to
80% of cases.69 Seizures can be detected in the aEEG as
“saw-tooth-like” augmentations of the baseline amplitude
but should be confirmed by examination of the simulta-
neous raw-EEG trace to rule out any artifact (►Fig. 4). Thus,
aEEG can facilitate the verification of “clinical seizure”
diagnosis and detect subclinical seizures. Overall, aEEG is
a useful aid for clinical decision making in the NICU,
particularly when full EEG monitoring is either not feasible
or not available. However, since most neonatal seizures are
brief and focal, and many are low-amplitude, they may be
missed by aEEG69–71 that is clearly not a very sensitive tool
for seizure detection. On the other hand, recently developed
automatic seizure detection algorithms are expected to
enhance seizure detection considerably. It should, however,
be noted that no single automated seizure detection system
is reliable enough to substitute for an experienced electro-
encephalographer in the clinical setting. These algorithms
are rather used to provide intuitive decision support to
NICU personnel.72,73

Seizure treatment studies that compared clinical diagno-
sis alonewith aEEG-based continuousmonitoring for seizure
detection showed a lower injury score on MRI and a lower
epilepsy incidence later in life when aEEG monitoring was
available.74,75 The reduction of total seizure burden by
optimized aEEG-guided treatment correlatedwith improved
cognitive outcome in neonates suffering from hypoxic-ische-
mic encephalopathy.76 In conclusion, aEEG has the potential
to support the diagnosis and treatment of neonatal seizures,
particularly in nonspecialist centers. Since EEG is particularly
resource-intensive, a key area of high-priority research is
optimizing seizure detection algorithms for use in clinical
settings and automated seizure-burden analyses for use in
future clinical treatment trials.

Fig. 4 aEEG (above) and EEG traces (below) depicting a seizure pattern in a neonate. The red blocks in the event line identify the seizures. aEEG,
amplitude-integrated electroencephalography.
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Neuroimaging of Neonatal Seizures

Neuroimaging techniques used in neonatal seizures include
cranial ultrasound (cUS) and MRI. Although most NICUs use
cUS as the method of choice, MRI is rapidly gaining ground
with the majority of neonates with seizures or HIE in recent
studies undergoing at least one MRI scan.77,78 The distinct
advantages of cUS are the wider availability, the feasibility of
bedside use in all neonates including those too unstable to be
transported to the MRI unit, and its compatibility with
minimal handling in very immature neonates. However,
the acquisition of high-quality cUS images is user-depen-
dent, thus posing clear limitations for the detection of
specific brain injuries. On the other hand, MRI is not always
available and requires a transfer of the neonate to a dedicated
MRI unit. Nevertheless, MRI has been acknowledged as the
optimal neuroimaging modality for neonatal seizures, par-
ticularly when age-appropriate acquisition protocols are
applied.79Ultimately, a combination of these two techniques
could provide the ideal tools to evaluate the underlying
etiology.

The added value of MRI compared with cUS has been
assessed in a large cohort of term and near-term infants
with different seizure etiologies.80 In all, but 6% of infants,
the underlying etiology could be identified, helped signif-
icantly by MRI.80 In 12% of infants, a diagnosis or signifi-
cant imaging abnormalities would have been missed if
only cUS rather than a combination of cUS and MRI had
been used. As expected, MRI was most useful in diagnos-
ing cerebral sinus venous thrombosis, some metabolic
disorders, and cerebral dysgenesis.80 Another study
showed that the probability of neurodevelopmental
impairment or recurrent seizures was low in the absence
of significant cerebral lesions on MRI,81 highlighting the
utility of MRI not only in identifying the cause of neonatal
seizures but also in providing information on long-term
outcome.

Magnetic resonance spectroscopy (MRS) can contribute
information additional to conventionalMRI in the evaluation
of neonatal seizures by noninvasively measuring CNS
metabolite levels such as N-acetylaspartate (NAA), choline,
creatine, and lactate. Abnormal lactate, pyruvate, or amino
acid peaks may point to inborn errors of metabolism,82 and
MRS may guide the detection of mitochondrial disease in
neonates with normal MRI.83 Furthermore, MRS has the
potential to contribute information relevant to prognosis
in HIE.84 Several studies have shown that lactate/creatine
plus phosphocreatine, lactate/NAA, or lactate/choline–con-
taining compounds peak-area ratios in HIE provide accurate
prognostic markers of the severity of brain injury and
subsequent neurodevelopmental outcome before changes
are apparent on conventional MRI.85–89 However, obtaining
and interpretingMRS remains very difficult for nonspecialist
centers.

The rate of early diagnosis, especially ofmetabolic disease,
is expected to increase with the further development of
neuroimaging techniques. This will lead to early and thus
more efficient management of treatable conditions.

Measuring the Efficacy of Neonatal Seizure
Treatment

To date, few studies have used a standardized protocol for
measuring seizure treatment efficacy in neonates. Many older
studies relied on the clinical abolition of seizures only as a
measure of treatment efficacy; this is clearly not adequate.
aEEG efficacy measurement is better but there are some
limitations already outlined that make aEEG inadequate for
use in randomized controlled trials. Full EEG has been used in
several small studies to measure treatment efficacy but the
methods usedwere heterogeneous; information on the length
of time it took for seizures to reduce or abate was rarely
included, and the percentage change in seizures from baseline
was not discussed. This issue makes a comparison between
studies particularly challenging and a meta-analysis almost
impossible. As a result, it has been difficult to progress studies
of antiseizure medication treatment in neonates. Measuring
treatment outcomes for neonatal seizures can also be difficult
becauseof the natural historyofneonatal seizures, and this can
vary with etiology.90

We advocate the use of seizure burden as the quantitative
measure of choice when assessing antiseizure medication
efficacy.91–94 Seizure burden can be measured in minutes
per hour and is a measure of the short-term intensity of
seizures. Seizure detection algorithms are currently undergo-
ing randomized trials, and there is no doubt that this technol-
ogywill very soonmake it easier to automatically calculate the
on-going seizure burden and evolving seizure profile.95,96

It has long been recognized that neonatal seizures evolve
over time but very few studies have detailed the evolution of
electrographic seizures in neonates and those that have,
generally describe seizures inneonateswithHIE.90,97–99 Lynch
et al examined the temporal distribution of seizures in
neonates with HIE and found that seizures had a short period
of high-electrographic seizure burden near the time of seizure
onset, followed by a longer period of low-seizure burden.90

Neonatal seizure evolution does not only depend on
etiology and factors, such as gestational age and treatment,
are also important (►Fig. 5). However, it is not known if
earlier treatment of electrographic seizures will alter the
course of the seizure evolution and result in less brain injury
though some studies do indicate that a lower seizure burden
is associated with less severe MRI severity scores and better
outcomes.74,76,100 Due to logistic challenges in EEGmonitor-
ing and recruitment,12 studies that aim to treat electro-
graphic seizures immediately after onset are rare.74,76,93

Understanding the impact of seizure burden on long-term
neurodevelopmental outcomes is an area of priority research.
The evaluation of antiseizure medication in neonates, within
the contextof their clinical picture,mayhelp to conceive novel,
more effective drugs, and treatment protocols.

Metabolic and Genetic Workup in
Pharmacoresistant Neonatal Seizures

While most neonatal seizures are symptomatic, a subgroup
of about approximately 15% represents distinct neonatal
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epilepsy syndromes, related to either brainmalformations or
genetic etiologies.21 Within this subgroup, congenital brain
malformations have been established in 41%, whereas
genetic etiologies were identified in 42% of neonatal epilep-
sies,21 with an overlap of approximately 9% between struc-
tural and genetic causes. Inborn errors of metabolism,
established on the grounds of clinical presentation and
biochemical investigations, and often verified by genetic
workup, represent a major challenge that needs to be iden-
tified, and addressed, quickly to avoid metabolic decompen-
sation and enable counseling regarding recurrence risks and
overall prognosis.101,102

As early diagnosis enables specific treatment in some
metabolic disorders103 andmay influence the choice of drugs
in primary genetic conditions, a diagnostic algorithm should
be in place in all neonatal units. This algorithm should
include a standardized and well-documented vitamin B6

trial (►Fig. 6) which may identify patients with defects in
ALDH7A1,104 PNPO,105 the newly described PLPBP (previous-
ly named PROSC) gene,106,107 or rare cases of severe congen-
ital hypophosphatasia.108 These patients manifest with
myoclonic seizures or a variety of other seizure types that
are typically resistant to standard anticonvulsants and may
be associated with a burst suppression pattern in EEG.
Respective biomarkers can be used to guide further diagnos-
tic workup of inborn errors of metabolism (►Table 1).

Patients with molybdenum cofactor deficiency (MocD)
manifest with tonic–clonic seizures, poor feeding, and variable
facial dysmorphic signs. In this disorder, neuroimaging is quite

specific, with findings ranging from cerebral edema to cystic
leukoencephalopathy.109 For MocD type A, substitution with
purified cyclic pyranopterinmonophosphate cPMPhasproven
effective but the window of opportunity is very short.110

The past decade has revealed a quickly growing number of
genes that causeprimarygeneticearly-onsetepilepticenceph-
alopathies.111 Some may have suggestive semiology, such as
sequential seizures inKCNQ2 pathogenic variants, while in, for
example, STXBP1 pathogenic variants, broad phenotypic vari-
ability has been described.112 Thus, many institutions have
changed their policies by sequencingmultiple genes in a panel
approachorgoingfornext-generationsequencingof thewhole
exome102 with a diagnostic yield of approximately 40% in
patients with seizure onset < 2 months of age.113 As patho-
genic variants in somegenes occur denovo,while others are of
Mendelian inheritance, an exact diagnosis is crucial for geno-
type–phenotype correlations114 and further family planning
and counseling.

A detailed characterization of the electroclinical features
associated with pathogenic genetic variants will help to
refine the genotype–phenotype correlations that guide the
increasingly applied genetic testing.

The Need for Trials in Neonatal Seizures

Considering that a high-seizure burden may aggravate long-
term outcome, there is an urgent need to control prolonged
or recurrent seizures. Nevertheless, there is still an open
debate concerning the management of neonatal seizures.115

Fig. 5 Seizures in two neonates showing the evolving seizure burden. The red vertical lines indicate the administration of loading doses of phenobarbitone
and the green vertical lines represent the administration of loading doses of a second line anticonvulsant (phenytoin or midazolam). The neonate in A has a
total seizure burden of 243 minutes with 185 seizures; the neonate in B has a total seizure burden of 214 minutes with 56 seizures. The middle black trace
denotes the neurophysiologist annotation of seizures, and the bottomblue trace denotes the period of therapeutic hypothermia. Both neonates had periods
of status epilepticus, that is, seizure burden of > 30 minute/h. Reproduced from Boylan et al.12
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Fig. 6 Proposed algorithm for a standardized vitamin B6 trial. The timing and switch from pyridoxine HCL to pyridoxal 5′-phosphate (PLP) is
individual and should be considered after 24 hours on pyridoxine in case of persistent high seizure frequency. Improvement on EEG can lag
markedly behind clinical improvement and is thus not a basis for initial decision-making. The algorithm does not exclude the simultaneous use of
conventional anticonvulsants. CSF, cerebrospinal fluid; EEG, electroencephalography; SD, standard deviation.

Table 1 Common metabolic diseases associated with neonatal seizures, their metabolic and genetic biomarkers

Disease Urine Plasma CSF Gene

Antiquitin
deficiency

" AASA, " PA " PA " AASA, P6C, ↓PLP,
" PA, sec NT abn.

ALDH7A1

PNPO deficiency (Vanillactate) B6 profile
" pyridoxamine

↓ PLP, sec NT abnorm. PNPO

Congenital
Hypophosphatasia

↓ AP, B6 profile, " PLP (↓ PLP ?) TNSALP

MOCOD, ISOD Sulfocysteine
" AASA, " P6C

↓ Uric acid " AASA, P6C
↓PLP, " PA

MOCS1, MOCS2, GPNH

NKH (non ketotic
hyperglycinemia)

Aminoacids (glycine) Aminoacids (glycine)
CSF/plasma >0.004

4-enzyme cleavage system

Organoacidurias
(e.g., D2HGA)

Organic acid
profile

Aminoacids …

CDG syndromes Transferrin isoelectric
focusing

Common in CDG type II

Zellweger
Syndrome

VLCFA, PA, phytanic acid,
pristanic acid

PEX genes 1–13

Adenylosuccinate
lyase deficiency

Purines ADSL

Abbreviations: CSF, cerebrospinal fluid. NKH, nonketotic hyperglycinemia; PLP, pyridoxal 5′-phosphate; CDG, congenital disorders of glycosylation;
MOCOD, Molybdenum cofactor deficiency; ISOD, isolated sulfite oxidase deficiency; D2HGA-2, D-2-hydroxyglutaric aciduria; AASA, α-aminoadipic
semialdehyde; PA, propionic acid; P6C, Δ1-piperideine 6-carboxylic acid; AP, alkaline phosphatase; VLCFA, very long chain fatty acids; sec, secondary;
NT, neurotransmitter.
Specific biomarkers in preferredmaterial are underlined, while biomarkers in non-preferredmaterial, inconsistent and/or secondary findings, are not.
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As a first step, the underlying etiology of seizures must be
established as soon as possible, since this can facilitate an
etiological and effective treatment. As a second step, for
symptomatic treatment, short-term or long-term therapy
should be chosen, depending on the risk of seizure
recurrence.

One of the major issues in the management of neonatal
seizures is the lack of effective antiseizure drugs. In a
Cochrane’s review from 2004,116 only two randomized con-
trolled trials could be identified, with the authors concluding
that “there is little evidence from randomized controlled trials
to support the use of anyof the anticonvulsants currently used
in the neonatal period.” Phenobarbital, the most widely-used
first-line drug in neonatal seizures, has a response rate of
approximately43%andphenytoin, asa second-lineantiseizure
medication, of 57%.91 Benzodiazepines and levetiracetam are
commonly used as second- or third-line drugs. Lidocaine
reached a response rate of 68% in full-term neonates with a
higher response rate than midazolam as second-line antisei-
zuremedication (p ¼ 0.049).117However, concerns have been
raised regarding lidocaine toxicity, mainly in the form of
cardiac arrhythmias, concerning 4.8% of neonates in a large
study.118 In view of potential cardiac side effects, recent
reviews warn against combining lidocaine with other cardio-
toxic agents, for example, phenytoin.119 In three current
studies, including a large cohort of 368 full-term and 153
preterm infants, lidocaine-associated cardiaceventswere rare,
especially since the introduction of new reduced-dose regi-
mens.120–122 It should be noted that no specific antiseizure
medication for preterm infants are indicated, despite the vast
differences in pharmacokinetics, as well as in the maturation,
of the CNS. Finally, although it has been long recognized that
current treatments are ineffective as first-linemedications for
neonatal seizures, trials still focus on refractory neonatal
seizures rather than on their initial treatment.

In 2009, the NEMO (neonatal seizure using medication
off-patent) consortium set out to evaluate the loop diuretic
bumetanide as a potential second-line treatment for neona-
tal seizures in a multicenter study across Europe. This study
was, unfortunately, stopped early because of possible
ototoxicity concerns and limited evidence for seizure reduc-
tion. In the past decade, several antiseizure medications,
such as levetiracetam123,124 and topiramate,125 have
emerged as viable alternatives with the potential to address
age-specific mechanisms and challenges. Two large random-
ized, controlled trials of bumetanide (NCT00830531) and
levetiracetam (NEOLEV2: NCT01720667) are currently
undergoing and are expected to yield more detailed data
regarding the use of these antiseizure medications to treat
neonatal seizures. The preliminary results of the first study,
evaluating the efficacy of bumetanide as add-on therapy for
refractory neonatal seizures, demonstrated an additional
reduction in seizure burden attributable to bumetanide
over phenobarbital.126 The preliminary results of
the second study, evaluating the efficacy and safety of
levetiracetam compared with phenobarbital in the first-
line treatment of neonatal seizures, supported a higher
efficacy of phenobarbital compared with levetiracetam, but

this was associated with a higher rate of side effects.127

While the final evaluation of these trials is still pending, it
should be pointed out that their infrastructure involved the
implementation of cutting-edge technology to provide
continuous video EEG monitoring and real-time response
to seizure detection.128 Although this standard of care yet
remains unfeasible in the standard clinical setting, the
development of this framework opens up new perspectives
for future research, as well as for optimizing the manage-
ment of neonatal seizures.

Another critical issue in neonatal seizure management is
the optimal duration of antiseizure medication therapy
when seizures cease. A recent systematic review129 suggests
toweanmedication to a single antiseizuremedication before
discharge or even withdraw medication altogether, if only
single or rare seizures have occurred and the neonate has
been seizure free for at least 48 to 72 hours and if the risk of
recurrence is not felt to be unusually high. However, in a
prospective multicenter study conducted in 2013 to 2015,
the decision to send a neonate home on antiseizure medica-
tion correlated rather with the hospital of admission than
with the seizure burden and the seizure etiology.130 Pheno-
barbital, the most commonly prescribed first-line antisei-
zure medication for neonatal seizures, is often maintained
for several months, due to fear of seizure recurrence after
early discontinuation, although continued exposure to
phenobarbital may have deleterious long-term effects on
the developing brain.131,132

Finally, it is still unclear if improved control of neonatal
seizures has the potential to enhance long-term outcome, and
this will remain an open issue until effective treatments are
found. New generation antiseizure medication appears prom-
ising, considering theabsenceofproapoptotic properties.115,133

Moreover, the development of antiepileptogenic drugs in this
vulnerable period of brain developmentmay change the evolu-
tion of the disease. The need for randomized controlled studies
in neonates has never been more urgent. In the next step,
standardized treatment protocols of neonatal seizures, proving
the precise timing, and indication for etiologic treatment are
required.

Outcome of Neonatal Seizures

Mortality following neonatal seizures has decreased from
40 to 20% in the last few decades. However, the prevalence
of long-term neurological sequelae in survivors remains
unchanged at 30%.1,11 The incidence of postneonatal
epilepsy,134 cerebral palsy, and developmental delay is
higher in preterm neonates,8,135 with a reported odds ratio
of 14 (95% confidence interval [CI]: 2–86) per week of
gestational age.136 This shift frommortality to morbidity in
the preterms poses a significant challenge for clinical
management in the NICU.137 In a recent study,138 unfavor-
able outcome predictors in preterm neonates included low
birth weight, low Apgar’s score at 1 minute, abnormalities
in the neurologic examination, pathologic EEG or cUS
findings, and particularly neonatal status epilepticus (a
rarity at low gestational ages).
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Moreover, recentpreclinical139andclinical140,141 studies in
HIEhaveprovidedevidencethat recurrentseizures themselves
may amplify injury to the developing brain beyond that of the
underlying etiology. Overall, experimental data support the
belief that seizures in early life impede normal development
and reduce the efficiency of cortical networks, even in the
absence ofcell loss.142,143Permanent impairments in learning,
memory, and cognition, as well as increased seizure suscepti-
bility, may result from these seizure-induced changes in
neuronal connectivity and receptor expression.144,145 Inter-
estingly, animal models provide evidence that prolonged
seizures or status epilepticus result in brain injury only in
the presence of preexisting insults, such as those associated
with HIE.146 These observations are crucial in terms of neona-
tal seizure management but experimental data still awaits
confirmation in prospective double-blind clinical studies. It
should be noted that a 2016 Cochrane’s review investigating
prophylactic barbiturate use in HIE147 reported a reduced risk
of seizures but no reduction in neonatal mortality, whereas
long-term outcomes were unavailable.

In themeantime, several, usually single-center, studies have
sought to identify outcome predictors, mainly in the underly-
ing etiology or specific seizure types and EEG patterns.10

Research on this topic is, however, impeded by the variable
criteria of neonatal seizure identification and etiologic diagno-
sis throughout research studies,10,137 with preterm neonates
constitutingaparticularchallenge inthis respect.Nevertheless,
considerable efforts have been made to develop a robust
scoring system/predictive model for neonatal seizures that
would facilitate clinical decision.148–152 These models are yet
to be validated in larger, representative contemporary cohorts,
to promote their implementation in clinical practice.

The increased availability of continuous video-EEG and
aEEG monitoring in diagnosis and treatment evaluation of
neonatal seizures is offering more refined diagnostic and
therapeutic approaches. Furthermore, biomarkers, such as
semiology and EEG, are expected to play a new role in the
contextofgeneticdisease,21andnovel therapies123,124deriving
from laboratory research and aiming to minimize damage to
the immature brain153 are expected to improve long-term
outcomes. Predictive models and scoring systems will have
to adapt to this rapidly changing landscapeofneonatal seizures
and their outcomes.

The development of novel, disease-modifying, or antiepi-
leptogenic therapies together with new neuroprotective
agents will be crucial in improving the outcome of neonatal
seizures.

Conclusion

Recent technological advances in diagnostics, including full
EEG, aEEG,MRI,metabolic, and genetic testing, have improved
seizure detection and etiologic classification in neonates.
Meanwhile, ground-breaking preclinical research on the
effects of seizures andantiseizuremedication in the immature
brain has improved our understanding of this complicated
situation. However, little has changed in terms of treatment
and, consequently, the long-term outcomes, with neonatal

seizures, continuing to pose a challenge for clinicians world-
wide. Researchmust continue to facilitate the decoding of the
mechanismsunderlyingneonatal seizures, advance theirman-
agement by developing age-specific agents, and, ultimately, to
improve long-term outcomes in affected infants.
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natal seizures—update, in Zurich, Switzerland, June 24,
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