Semin Thromb Hemost 2019; 45(06): 569-575
DOI: 10.1055/s-0039-1693475
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Involvement of Platelets in Cancers

Diane Mege*
1   Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France
,
Mathilde Aubert*
1   Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France
,
Romaric Lacroix
1   Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France
2   Laboratoire d'Hématologie, Centre Hospitalo-Universitaire Conception, Marseille, France
,
Françoise Dignat-George
1   Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France
2   Laboratoire d'Hématologie, Centre Hospitalo-Universitaire Conception, Marseille, France
,
Laurence Panicot-Dubois
1   Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France
,
Christophe Dubois
1   Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France
› Author Affiliations
Further Information

Publication History

Publication Date:
05 August 2019 (online)

Abstract

Cancer-related venous thromboembolism (VTE) is frequent and constitutes the second leading cause of death in patients with cancer. High platelet count is one of independent predictive factors of cancer-associated VTE. Besides the implication of platelets in cancer-associated VTE, recent clinical and experimental evidences support that platelets play several roles in the progression of malignancies and inversely, cancer can also influence platelet count and activity. The objective of this report is to review the current literature regarding the role of platelets in cancer through experimental results and population-based studies. Platelets are implicated in cancer progression and metastasis through proangiogenic factors (growth factors and signaling pathways), antiangiogenic factors (angiostatin, endostatin, thrombospondin-1), and matrix metalloproteinases. In addition, platelets are involved in cancer-associated thrombosis and thus tumor cell-induced platelet activation, through anionic phospholipids on their surface, released soluble factors, such as P-selectin, CD40 ligand, platelet factor 4, thrombospondin-1 or beta-thromboglobulin, tumor cell procoagulant proteins (tissue factor, urokinase-type plasminogen activator, plasminogen activator inhibitor type 1), and microparticles. Due to these different mechanisms, platelets may represent a potential therapeutic target. The main current treatments against platelets are: (1) acetylsalicylic acid (aspirin) and nonsteroidal anti-inflammatory drugs, nonselective cyclo-oxygenase (COX)-1 and COX-2 inhibitors, which are associated with decreased cancer incidence and better overall survival and (2) irreversible inhibitor of P2Y12 subtype which decreases cancer incidence. Platelets are key players in tumor growth, metastasis, and cancer-associated thrombosis. This multifaceted role identifies them as a relevant therapeutic target for prevention of cancer occurrence and treatment of cancer.

* The first two authors contributed equally.


 
  • References

  • 1 Trousseau A. Plegmasia alba dolens. Lectures on Clinical Medicine, Delivered at the Hotel-Dieu, Paris. Vol. 5. 1865: 281-332
  • 2 Chew HK, Wun T, Harvey D, Zhou H, White RH. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med 2006; 166 (04) 458-464
  • 3 Sørensen HT, Mellemkjaer L, Olsen JH, Baron JA. Prognosis of cancers associated with venous thromboembolism. N Engl J Med 2000; 343 (25) 1846-1850
  • 4 Sallah S, Wan JY, Nguyen NP. Venous thrombosis in patients with solid tumors: determination of frequency and characteristics. Thromb Haemost 2002; 87 (04) 575-579
  • 5 Alcalay A, Wun T, Khatri V. , et al. Venous thromboembolism in patients with colorectal cancer: incidence and effect on survival. J Clin Oncol 2006; 24 (07) 1112-1118
  • 6 Ouaissi M, Frasconi C, Mege D. , et al. Impact of venous thromboembolism on the natural history of pancreatic adenocarcinoma. Hepatobiliary Pancreat Dis Int 2015; 14 (04) 436-442
  • 7 Khorana AA, Francis CW, Culakova E, Kuderer NM, Lyman GH. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost 2007; 5 (03) 632-634
  • 8 Khorana AA, Connolly GC. Assessing risk of venous thromboembolism in the patient with cancer. J Clin Oncol 2009; 27 (29) 4839-4847
  • 9 Khorana AA, Francis CW, Menzies KE. , et al. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. J Thromb Haemost 2008; 6 (11) 1983-1985
  • 10 Thomas GM, Panicot-Dubois L, Lacroix R, Dignat-George F, Lombardo D, Dubois C. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J Exp Med 2009; 206 (09) 1913-1927
  • 11 Simanek R, Vormittag R, Ay C. , et al. High platelet count associated with venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). J Thromb Haemost 2010; 8 (01) 114-120
  • 12 Mezouar S, Frère C, Darbousset R. , et al. Role of platelets in cancer and cancer-associated thrombosis: experimental and clinical evidences. Thromb Res 2016; 139: 65-76
  • 13 Plantureux L, Mège D, Crescence L, Dignat-George F, Dubois C, Panicot-Dubois L. Impacts of cancer on platelet production, activation and education and mechanisms of cancer-associated thrombosis. Cancers (Basel) 2018; 10 (11) 441-464
  • 14 Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285 (21) 1182-1186
  • 15 Martinez MC, Andriantsitohaina R. Microparticles in angiogenesis: therapeutic potential. Circ Res 2011; 109 (01) 110-119
  • 16 Varon D, Shai E. Role of platelet-derived microparticles in angiogenesis and tumor progression. Discov Med 2009; 8 (43) 237-241
  • 17 Mostefai HA, Andriantsitohaina R, Martínez MC. Plasma membrane microparticles in angiogenesis: role in ischemic diseases and in cancer. Physiol Res 2008; 57 (03) 311-320
  • 18 Yoon S-O, Park S-J, Yun C-H, Chung A-S. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol 2003; 36 (01) 128-137
  • 19 Gasic GJ, Gasic TB, Stewart CC. Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A 1968; 61 (01) 46-52
  • 20 Pearlstein E, Ambrogio C, Karpatkin S. Effect of antiplatelet antibody on the development of pulmonary metastases following injection of CT26 colon adenocarcinoma, Lewis lung carcinoma, and B16 amelanotic melanoma tumor cells into mice. Cancer Res 1984; 44 (09) 3884-3887
  • 21 Nieuwland R, van der Post JA, Lok CA, Kenter G, Sturk A. Microparticles and exosomes in gynecologic neoplasias. Semin Thromb Hemost 2010; 36 (08) 925-929
  • 22 Vanschoonbeek K, Feijge MA, Van Kampen RJ. , et al. Initiating and potentiating role of platelets in tissue factor-induced thrombin generation in the presence of plasma: subject-dependent variation in thrombogram characteristics. J Thromb Haemost 2004; 2 (03) 476-484
  • 23 Cedervall J, Hamidi A, Olsson A-K. Platelets, NETs and cancer. Thromb Res 2018; 164 (Suppl. 01) S148-S152
  • 24 Amirkhosravi A, Amaya M, Desai H, Francis JL. Platelet-CD40 ligand interaction with melanoma cell and monocyte CD40 enhances cellular procoagulant activity. Blood Coagul Fibrinolysis 2002; 13 (06) 505-512
  • 25 Tranum BL, Haut A. Thrombocytosis: platelet kinetics in neoplasia. J Lab Clin Med 1974; 84 (05) 615-619
  • 26 Khorana AA, Francis CW, Culakova E, Lyman GH. Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer 2005; 104 (12) 2822-2829
  • 27 Suzuki A, Takahashi T, Nakamura K. , et al. Thrombocytosis in patients with tumors producing colony-stimulating factor. Blood 1992; 80 (08) 2052-2059
  • 28 Stone RL, Nick AM, McNeish IA. , et al. Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med 2012; 366 (07) 610-618
  • 29 Sasaki Y, Takahashi T, Miyazaki H. , et al. Production of thrombopoietin by human carcinomas and its novel isoforms. Blood 1999; 94 (06) 1952-1960
  • 30 Ryu T, Nishimura S, Miura H. , et al. Thrombopoietin-producing hepatocellular carcinoma. Intern Med 2003; 42 (08) 730-734
  • 31 Rafii S, Shapiro F, Pettengell R. , et al. Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 1995; 86 (09) 3353-3363
  • 32 Falanga A, Panova-Noeva M, Russo L. Procoagulant mechanisms in tumour cells. Best Pract Res Clin Haematol 2009; 22 (01) 49-60
  • 33 Caine GJ, Lip GY, Stonelake PS, Ryan P, Blann AD. Platelet activation, coagulation and angiogenesis in breast and prostate carcinoma. Thromb Haemost 2004; 92 (01) 185-190
  • 34 Cella G, Marchetti M, Vianello F. , et al. Nitric oxide derivatives and soluble plasma selectins in patients with myeloproliferative neoplasms. Thromb Haemost 2010; 104 (01) 151-156
  • 35 Huang J, Jochems C, Talaie T. , et al. Elevated serum soluble CD40 ligand in cancer patients may play an immunosuppressive role. Blood 2012; 120 (15) 3030-3038
  • 36 Mielczarek-Palacz A, Sikora J, Kondera-Anasz Z, Hauza G. Imbalance in serum soluble CD30/CD30L and CD40/CD40L systems are associated with ovarian tumors. Hum Immunol 2013; 74 (01) 70-74
  • 37 Peterson JE, Zurakowski D, Italiano Jr JE. , et al. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis 2012; 15 (02) 265-273
  • 38 Suh EJ, Kabir MH, Kang U-B. , et al. Comparative profiling of plasma proteome from breast cancer patients reveals thrombospondin-1 and BRWD3 as serological biomarkers. Exp Mol Med 2012; 44 (01) 36-44
  • 39 Benedetti Panici P, Scambia G, Massidda B, Chessa P, Tarquini A, Mancuso S. Elevated plasma levels of beta-thromboglobulin in breast cancer. Oncology 1986; 43 (04) 208-211
  • 40 Henn V, Slupsky JR, Gräfe M. , et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391 (6667): 591-594
  • 41 Inwald DP, McDowall A, Peters MJ, Callard RE, Klein NJ. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res 2003; 92 (09) 1041-1048
  • 42 Ingersoll SB, Langer F, Walker JM. , et al. Deficiencies in the CD40 and CD154 receptor-ligand system reduce experimental lung metastasis. Clin Exp Metastasis 2009; 26 (07) 829-837
  • 43 Poruk KE, Firpo MA, Huerter LM. , et al. Serum platelet factor 4 is an independent predictor of survival and venous thromboembolism in patients with pancreatic adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2010; 19 (10) 2605-2610
  • 44 Haemmerle M, Bottsford-Miller J, Pradeep S. , et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest 2016; 126 (05) 1885-1896
  • 45 Sakai H, Suzuki T, Takahashi Y. , et al. Upregulation of thromboxane synthase in human colorectal carcinoma and the cancer cell proliferation by thromboxane A2. FEBS Lett 2006; 580 (14) 3368-3374
  • 46 Cathcart M-C, Gately K, Cummins R, Kay E, O'Byrne KJ, Pidgeon GP. Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer. Mol Cancer 2011; 10: 25-39
  • 47 Kajita S, Ruebel KH, Casey MB, Nakamura N, Lloyd RV. Role of COX-2, thromboxane A2 synthase, and prostaglandin I2 synthase in papillary thyroid carcinoma growth. Mod Pathol 2005; 18 (02) 221-227
  • 48 Moussa O, Yordy JS, Abol-Enein H. , et al. Prognostic and functional significance of thromboxane synthase gene overexpression in invasive bladder cancer. Cancer Res 2005; 65 (24) 11581-11587
  • 49 Nie D, Che M, Zacharek A. , et al. Differential expression of thromboxane synthase in prostate carcinoma: role in tumor cell motility. Am J Pathol 2004; 164 (02) 429-439
  • 50 Heinmöller E, Weinel RJ, Heidtmann HH. , et al. Studies on tumor-cell-induced platelet aggregation in human lung cancer cell lines. J Cancer Res Clin Oncol 1996; 122 (12) 735-744
  • 51 Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 2005; 3 (08) 1800-1814
  • 52 Medina C, Jurasz P, Santos-Martinez MJ. , et al. Platelet aggregation-induced by caco-2 cells: regulation by matrix metalloproteinase-2 and adenosine diphosphate. J Pharmacol Exp Ther 2006; 317 (02) 739-745
  • 53 Alonso-Escolano D, Strongin AY, Chung AW, Deryugina EI, Radomski MW. Membrane type-1 matrix metalloproteinase stimulates tumour cell-induced platelet aggregation: role of receptor glycoproteins. Br J Pharmacol 2004; 141 (02) 241-252
  • 54 Jurasz P, Sawicki G, Duszyk M. , et al. Matrix metalloproteinase 2 in tumor cell-induced platelet aggregation: regulation by nitric oxide. Cancer Res 2001; 61 (01) 376-382
  • 55 Liu Y, Jiang P, Capkova K. , et al. Tissue factor-activated coagulation cascade in the tumor microenvironment is critical for tumor progression and an effective target for therapy. Cancer Res 2011; 71 (20) 6492-6502
  • 56 Ruf W, Yokota N, Schaffner F. Tissue factor in cancer progression and angiogenesis. Thromb Res 2010; 125 (Suppl. 02) S36-S38
  • 57 Böhm L, Serafin A, Akudugu J, Fernandez P, van der Merwe A, Aziz NA. uPA/PAI-1 ratios distinguish benign prostatic hyperplasia and prostate cancer. J Cancer Res Clin Oncol 2013; 139 (07) 1221-1228
  • 58 Zhang W, Ling D, Tan J, Zhang J, Li L. Expression of urokinase plasminogen activator and plasminogen activator inhibitor type-1 in ovarian cancer and its clinical significance. Oncol Rep 2013; 29 (02) 637-645
  • 59 Chen H, Peng H, Liu W. , et al. Silencing of plasminogen activator inhibitor-1 suppresses colorectal cancer progression and liver metastasis. Surgery 2015; 158 (06) 1704-1713
  • 60 Ferroni P, Roselli M, Portarena I. , et al. Plasma plasminogen activator inhibitor-1 (PAI-1) levels in breast cancer - relationship with clinical outcome. Anticancer Res 2014; 34 (03) 1153-1161
  • 61 Andrén-Sandberg A, Lecander I, Martinsson G, Astedt B. Peaks in plasma plasminogen activator inhibitor-1 concentration may explain thrombotic events in cases of pancreatic carcinoma. Cancer 1992; 69 (12) 2884-2887
  • 62 Ay C, Simanek R, Vormittag R. , et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). Blood 2008; 112 (07) 2703-2708
  • 63 Jain S, Zuka M, Liu J. , et al. Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proc Natl Acad Sci U S A 2007; 104 (21) 9024-9028
  • 64 Fujita N, Takagi S. The impact of Aggrus/podoplanin on platelet aggregation and tumour metastasis. J Biochem 2012; 152 (05) 407-413
  • 65 Kato Y, Kaneko M, Sata M, Fujita N, Tsuruo T, Osawa M. Enhanced expression of Aggrus (T1alpha/podoplanin), a platelet-aggregation-inducing factor in lung squamous cell carcinoma. Tumour Biol 2005; 26 (04) 195-200
  • 66 Takagi S, Oh-hara T, Sato S, Gong B, Takami M, Fujita N. Expression of Aggrus/podoplanin in bladder cancer and its role in pulmonary metastasis. Int J Cancer 2014; 134 (11) 2605-2614
  • 67 Kato Y, Fujita N, Kunita A. , et al. Molecular identification of Aggrus/T1α as a platelet aggregation-inducing factor expressed in colorectal tumors. J Biol Chem 2003; 278 (51) 51599-51605
  • 68 Takagi S, Sato S, Oh-hara T. , et al. Platelets promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and CLEC-2. PLoS One 2013; 8 (08) e73609
  • 69 Payne H, Ponomaryov T, Watson SP, Brill A. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. Blood 2017; 129 (14) 2013-2020
  • 70 Ernst A, Hofmann S, Ahmadi R. , et al. Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival. Clin Cancer Res 2009; 15 (21) 6541-6550
  • 71 Peterziel H, Müller J, Danner A. , et al. Expression of podoplanin in human astrocytic brain tumors is controlled by the PI3K-AKT-AP-1 signaling pathway and promoter methylation. Neuro-oncol 2012; 14 (04) 426-439
  • 72 Piccin A, Murphy WG, Smith OP. Circulating microparticles: pathophysiology and clinical implications. Blood Rev 2007; 21 (03) 157-171
  • 73 Nomura S, Niki M, Nisizawa T, Tamaki T, Shimizu M. Microparticles as biomarkers of blood coagulation in cancer. Biomark Cancer 2015; 7: 51-56
  • 74 Geddings JE, Mackman N. Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood 2013; 122 (11) 1873-1880
  • 75 Hron G, Kollars M, Weber H. , et al. Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer. Thromb Haemost 2007; 97 (01) 119-123
  • 76 Baran J, Baj-Krzyworzeka M, Weglarczyk K. , et al. Circulating tumour-derived microvesicles in plasma of gastric cancer patients. Cancer Immunol Immunother 2010; 59 (06) 841-850
  • 77 Yates KR, Welsh J, Echrish HH, Greenman J, Maraveyas A, Madden LA. Pancreatic cancer cell and microparticle procoagulant surface characterization: involvement of membrane-expressed tissue factor, phosphatidylserine and phosphatidylethanolamine. Blood Coagul Fibrinolysis 2011; 22 (08) 680-687
  • 78 Fleitas T, Martínez-Sales V, Vila V. , et al. Circulating endothelial cells and microparticles as prognostic markers in advanced non-small cell lung cancer. PLoS One 2012; 7 (10) e47365
  • 79 Graves LE, Ariztia EV, Navari JR, Matzel HJ, Stack MS, Fishman DA. Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res 2004; 64 (19) 7045-7049
  • 80 Liebhardt S, Ditsch N, Nieuwland R. , et al. CEA-, Her2/neu-, BCRP- and Hsp27-positive microparticles in breast cancer patients. Anticancer Res 2010; 30 (05) 1707-1712
  • 81 Thaler J, Ay C, Mackman N. , et al. Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J Thromb Haemost 2012; 10 (07) 1363-1370
  • 82 Cui CJ, Wang GJ, Yang S, Huang SK, Qiao R, Cui W. Tissue Factor-bearing MPs and the risk of venous thrombosis in cancer patients: A meta-analysis. Sci Rep 2018; 8 (01) 1675
  • 83 Mege D, Panicot-Dubois L, Ouaissi M. , et al. The origin and concentration of circulating microparticles differ according to cancer type and evolution: a prospective single-center study. Int J Cancer 2016; 138 (04) 939-948
  • 84 Mege D, Crescence L, Ouaissi M. , et al. Fibrin-bearing microparticles: marker of thrombo-embolic events in pancreatic and colorectal cancers. Oncotarget 2017; 8 (57) 97394-97406
  • 85 Schwertz H, Tolley ND, Foulks JM. , et al. Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med 2006; 203 (11) 2433-2440
  • 86 Brown GT, McIntyre TM. Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1β-rich microparticles. J Immunol 2011; 186 (09) 5489-5496
  • 87 Celecoxib Combined with Fluorouracil and Leucovorin in Treating Patients with Resected Stage III Adenocarcinoma (Cancer) of the Colon. Study code: NCT00085163. Available at: http://www.clinicaltrials.gov . Accessed July 9, 2019
  • 88 Rofecoxib after Surgery in Treating Patients with Stage II or Stage III Colorectal Cancer. Study code: NCT00031863. Available at: http://www.clinicaltrials.gov . Accessed July 9, 2019
  • 89 Rothwell PM, Wilson M, Elwin C-E. , et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 2010; 376 (9754): 1741-1750
  • 90 Khuder SA, Mutgi AB. Reproductive factors are crucial in the aetiology of breast cancer. Br J Cancer 2000; 83 (01) 133-133 , author reply 134
  • 91 Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol 2012; 13 (05) 518-527
  • 92 Flahavan EM, Bennett K, Sharp L, Barron TI. A cohort study investigating aspirin use and survival in men with prostate cancer. Ann Oncol 2014; 25 (01) 154-159
  • 93 Coyle C, Cafferty FH, Rowley S. , et al; Add-Aspirin investigators. ADD-ASPIRIN: A phase III, double-blind, placebo controlled, randomised trial assessing the effects of aspirin on disease recurrence and survival after primary therapy in common non-metastatic solid tumours. Contemp Clin Trials 2016; 51: 56-64
  • 94 Drew DA, Chin SM, Gilpin KK. , et al. ASPirin Intervention for the REDuction of colorectal cancer risk (ASPIRED): a study protocol for a randomized controlled trial. Trials 2017; 18 (01) 50
  • 95 Leader A, Zelikson-Saporta R, Pereg D. , et al. The effect of combined aspirin and clopidogrel treatment on cancer incidence. Am J Med 2017; 130 (07) 826-832
  • 96 Sustar V, Jansa R, Frank M. , et al. Suppression of membrane microvesiculation--a possible anticoagulant and anti-tumor progression effect of heparin. Blood Cells Mol Dis 2009; 42 (03) 223-227
  • 97 Debourdeau P, Elalamy I, de Raignac A. , et al. Long-term use of daily subcutaneous low molecular weight heparin in cancer patients with venous thromboembolism: why hesitate any longer?. Support Care Cancer 2008; 16 (12) 1333-1341
  • 98 Zwicker JI, Liebman HA, Bauer KA. , et al. Prediction and prevention of thromboembolic events with enoxaparin in cancer patients with elevated tissue factor-bearing microparticles: a randomized-controlled phase II trial (the Microtec study). Br J Haematol 2013; 160 (04) 530-537