Semin Musculoskelet Radiol 2019; 23(05): 467-476
DOI: 10.1055/s-0039-1693977
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

How the Ends of Bones Evolve and What They Do: The Anatomical and Biomechanical Perspective

Reinhard Putz
1   Anatomische Anstalt, Lehrstuhl I, Ludwig-Maximilians-Universität München, München, Germany
,
Bronek Boszczyk
2   Wirbelsäulenzentrum, Benedictus Krankenhaus Tutzing, Tutzing, Germany
,
3   Anatomische Anstalt, Lehrstuhl II, Ludwig-Maximilians-Universität München, München, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
25 September 2019 (online)

Abstract

Skeletal ossification occurs either directly within mesenchymal tissues or indirectly through a template of hyaline cartilage. Between the epiphyses and diaphyses of long bones, hyaline cartilaginous growth plates remain and constitute the progenitor cell reservoir from which the tissue develops toward the diaphysis and determines longitudinal bone size. Growth plates exhibit a characteristic architecture with columnar cell organization and different zonal morphology. The cells increase their volume toward the diaphysis, and eventually the longitudinally arranged septa of extracellular matrix mineralize. Finally, the mineralized cartilage matrix is replaced by lamellar bone. The extracellular matrix is rich in glycosaminoglycans, proteoglycans, and collagen II; at the edges of the growth plates, collagen I, III, and collagen X, especially at the mineralization front, are also present.

The geometry of the growth plates is regulated by the local mechanical environment. In general, all plates orient themselves perpendicular to the resulting compressive force vector; grooves, ridges, and lateral angulations are adaptations to withstand shear forces acting on the growth plates. The final shape of the fully grown bone is determined not only by the epiphyseal growth plates but also by their apophyseal counterpart. Both structures respond in a comparable fashion to the local mechanical environment.

Supplementary Material

 
  • References

  • 1 Knese H. Stützgewebe und Skeletsystem. In: Handbuch der mikroskopischen Anatomie. 2. Band. Die Gewebe. 5. Teil. Heidelberg, Germany: Springer; 1979
  • 2 Moore KL, Persaud TVN, Torchia MG. , et al. Embryologie. 6. Auflage. Munich, Germany: Elsevier; 2013: 447-457
  • 3 Wirtz A. Periostale ossifikation. In: Archiv für orthopädische und Unfall-Chirurgie, mit besonderer Berücksichtigung der Frakturenlehre und der orthopädisch-chirurgischen Technik. 1920. ;18: 559-575
  • 4 Tong W, Tower RJ, Chen C. , et al. Periarticular mesenchymal progenitors initiate and contribute to secondary ossification center formation during mouse long bone development. Stem Cells 2019; 37 (05) 677-689
  • 5 Heimkes B. The great apophyses: Functional strain and relevance [in German]. Orthopade 2016; 45 (03) 206-212
  • 6 Putz R, Milz S. Macroscopic and functional anatomy of the apophyseal plate [in German]. Orthopade 2016; 45 (03) 199-205
  • 7 Putz R, Pabst R. Sobotta Atlas der Anatomie. 22. Aufl. Munich, Germany: Elsevier; 2010
  • 8 Tillmann B. Skelettsystem. In: Tillmann B, Töndury G. , eds. Rauber/Kopsch, Band I, Bewegungsapparat. Stuttgart, Germany: Thieme; 1987
  • 9 Milz S, Benjamin M, Putz R. Molecular parameters indicating adaptation to mechanical stress in fibrous connective tissue. Adv Anat Embryol Cell Biol 2005; 178: 1-71
  • 10 Pauwels F. Eine neue Theorie über den Einfluß mechanischer Reize auf die Differenzierung der Stützgewebe. X. Beitrag zur funktionellen Anatomie und kausalen Morphologie des Stützgewebes. Z Anat Entwickl Gesch 1960; 117: 478-515
  • 11 Draenert K, Draenert Y. Morphologische Betrachtungen zum Wachstum der Knochen. In: Pförringer W, Rosemeyer B. , eds. Die Epiphysenfugen. Erlangen, Germany: Perimed; 1987: 9-24
  • 12 Milz S, Boszczyk A, Putz R. Development and functional structure of the epiphyseal plate [in German]. Orthopade 2002; 31 (09) 835-840
  • 13 Noonan KJ, Hunziker EB, Nessler J, Buckwalter JA. Changes in cell, matrix compartment, and fibrillar collagen volumes between growth-plate zones. J Orthop Res 1998; 16 (04) 500-508
  • 14 Putz R. Development and growth of the epiphysis [in German]. Z Orthop Ihre Grenzgeb 1996; 134 (05) 391-395
  • 15 Tillmann B, Claassen H. [Structure and function of the growth plate]. Z Orthop Ihre Grenzgeb 1996; 134 (05) 396-399
  • 16 Wasmer G, Pförringer W. Ultrastruktur und Biochemie der Epiphysenfuge. In: Pförringer W, Rosemeyer B. , eds. Die Epiphysenfugen. Erlangen, Germany: Perimed; 1987
  • 17 Caterson B, Christner JE, Baker JR, Couchman JR. Production and characterization of monoclonal antibodies directed against connective tissue proteoglycans. Fed Proc 1985; 44 (02) 386-393
  • 18 Caterson B, Mahmoodian F, Sorrell JM. , et al. Modulation of native chondroitin sulphate structure in tissue development and in disease. J Cell Sci 1990; 97 (Pt 3): 411-417
  • 19 Heinegård D, Oldberg O. Glycosylated matrix proteins. In: Royce PM, Steinmann B. . eds. Connective Tissue and Its Heritable Disorders. New York, NY: Wiley-Liss; 1993: 189-209
  • 20 Goetinck PF. Link protein. In: Kreis T, Vale R. , eds. Guidebook to the Extracellular Matrix and Adhesion Proteins. Oxford, UK: Oxford University Press; 1993: 70-72
  • 21 Watanabe H, Yamada Y. Mice lacking link protein develop dwarfism and craniofacial abnormalities. Nat Genet 1999; 21 (02) 225-229
  • 22 Guerassimov A, Duffy C, Zhang Y. , et al. Immunity to cartilage link protein in patients with juvenile rheumatoid arthritis. J Rheumatol 1997; 24 (05) 959-964
  • 23 Adams SL, Cohen AJ, Lassová L. Integration of signaling pathways regulating chondrocyte differentiation during endochondral bone formation. J Cell Physiol 2007; 213 (03) 635-641
  • 24 Spranger J. The type XI collagenopathies. Pediatr Radiol 1998; 28 (10) 745-750
  • 25 Olsen BR. Mutations in collagen genes resulting in metaphyseal and epiphyseal dysplasias. Bone 1995; 17 (2, Suppl): 45S-49S
  • 26 Reinecke M, Schmid AC, Heyberger-Meyer B, Hunziker EB, Zapf J. Effect of growth hormone and insulin-like growth factor I (IGF-I) on the expression of IGF-I messenger ribonucleic acid and peptide in rat tibial growth plate and articular chondrocytes in vivo. Endocrinology 2000; 141 (08) 2847-2853
  • 27 Hunziker EB, Kapfinger E, Saager C. Hypertrophy of growth plate chondrocytes in vivo is accompanied by modulations in the activity state and surface area of their cytoplasmic organelles. Histochem Cell Biol 1999; 112 (02) 115-123
  • 28 Grimsrud CD, Rosier RN, Puzas JE. , et al. Bone morphogenetic protein-7 in growth-plate chondrocytes: regulation by retinoic acid is dependent on the stage of chondrocyte maturation. J Orthop Res 1998; 16 (02) 247-255
  • 29 Salter DM, Godolphin JL, Gourlay MS. Chondrocyte heterogeneity: immunohistologically defined variation of integrin expression at different sites in human fetal knees. J Histochem Cytochem 1995; 43 (04) 447-457
  • 30 Ranvier L. Some facts relating to the development of bone tissue [in French]. Comptes Rendues Acad Sciences 1873; 77: 1105-1109
  • 31 Hurley JM, Betz RR, Loder RT, Davidson RS, Alburger PD, Steel HH. Slipped capital femoral epiphysis. The prevalence of late contralateral slip. J Bone Joint Surg Am 1996; 78 (02) 226-230
  • 32 Skuban TP, Vogel T, Baur-Melnyk A, Jansson V, Heimkes B. Function-orientated structural analysis of the proximal human femur. Cells Tissues Organs 2009; 190 (05) 247-255
  • 33 Amamilo SC, Bader DL, Houghton GR. The periosteum in growth plate failure. Clin Orthop Relat Res 1985; (194) 293-305
  • 34 Weiner D. Pathogenesis of slipped capital femoral epiphysis: current concepts. J Pediatr Orthop B 1996; 5 (02) 67-73
  • 35 Agarwal C, Seigle R, Agarwal S, Bilezikian JP, Hyman JE, Oberfield SE. Pseudohypoparathyroidism: a rare cause of bilateral slipped capital femoral epiphysis. J Pediatr 2006; 149 (03) 406-408
  • 36 Schnitzler CM, Daniels ED, Mesquita JM. , et al. Bone disease in African children with slipped capital femoral epiphysis: histomorphometry of iliac crest biopsies. Bone 1998; 22 (03) 259-265
  • 37 Cotta H, Rauterberg K. Physiology and pathology of the epiphyseal cartilage (in German; author's translation). Z Orthop Ihre Grenzgeb 1979; 117 (01) 1-12
  • 38 Georgiou L, Kivell TL, Pahr DH, Skinner MM. Trabecular bone patterning in the hominoid distal femur. PeerJ 2018; 6: e5156
  • 39 Murray DW, Wilson-MacDonald J, Morscher E, Rahn BA, Käslin M. Bone growth and remodeling after fracture. J Bone Joint Surg Br 1996; 78 (1, 78-B): 42-50
  • 40 Heimkes B, Posel P, Plitz W, Zimmer M. Age-related force distribution at the proximal end of the femur in normally growing children [in German]. Z Orthop Ihre Grenzgeb 1997; 135 (01) 17-23
  • 41 Morscher E. Mechanical relations of the hip joint and its association to the angle of the femur neck and especially to antetorsion of the femur neck during the developmental years [in German]. Z Orthop Ihre Grenzgeb 1961; 94: 374-394
  • 42 Li QY, Zhong GB, Liu ZD, Lao LF. Effect of asymmetric tension on biomechanics and metabolism of vertebral epiphyseal plate in a rodent model of scoliosis. Orthop Surg 2017; 9 (03) 311-318