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Abstract Background High-quality clinical data and biological specimens are key for medical
research and personalized medicine. The Biobanking and Biomolecular Resources
Research Infrastructure-European Research Infrastructure Consortium (BBMRI-ERIC)
aims to facilitate access to such biological resources. The accompanying ADOPT BBMRI-
ERIC project kick-started BBMRI-ERIC by collecting colorectal cancer data from
European biobanks.
Objectives To transform these data into a common representation, a uniform
approach for data integration and harmonization had to be developed. This article
describes the design and the implementation of a toolset for this task.
Methods Based on the semantics of a metadata repository, we developed a lexical
bag-of-words matcher, capable of semiautomatically mapping local biobank terms to
the central ADOPT BBMRI-ERIC terminology. Its algorithm supports fuzzy matching,
utilization of synonyms, and sentiment tagging. To process the anonymized instance
data based on these mappings, we also developed a data transformation application.
Results The implementation was used to process the data from 10 European
biobanks. The lexical matcher automatically and correctly mapped 78.48% of the
1,492 local biobank terms, and human experts were able to complete the remaining
mappings. We used the expert-curated mappings to successfully process 147,608 data
records from 3,415 patients.
Conclusion A generic harmonization approach was created and successfully used for
cross-institutional data harmonization across 10 European biobanks. The software
tools were made available as open source.
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Background and Significance

An important task in the medical research of the postge-
nomic era is the investigation of diseases by linking “-omics”
data with phenotypes.1 Widespread conditions, such as
cancer, diabetes, or Alzheimer’s disease, are influenced by
a variety of small, often cumulative effects2 that result from a
combination of genes,3 lifestyle,4 and environmental fac-
tors.5 The complexity of molecular disease patterns requires
many forms of therapeutic intervention, tailored to the
individual characteristics of a particular patient.6 Clinical
data, associated with well-characterized biomaterials, both
of the highest quality, are key for the development of new
drugs and diagnostic tests and are expected to be the
building blocks of personalizedmedicine in the near future.7

The Biobanking andBiomolecular Resources Research Infra-
structure - European Research Infrastructure Consortium
(BBMRI-ERIC) aims to facilitate access to biological resources.8

Via its Common Service Information Technology (CS-IT) plat-
form, a distributed computing environment, BBMRI-ERIC is
working on establishing a pan-European search engine for
biomaterial samples to support biomolecular and biomedical
research. As described in more detail in Proynova et al,9 it is
planned that the CS-IT platform follows the principles of the
decentralized search approach,10 developed by the German
Cancer Consortium.11 In contrast to centralized search
approaches (as implemented, e.g., in Schröder et al12), data
never leaves the biobanks, which enables them to retain data
sovereignty and protect their patients’ privacy.

To support the implementation of the CS-IT platform, the
Implementation and Operation of the Gateway for Health into
BBMRI-ERIC (ADOPT BBMRI-ERIC) project was launched. One
of its tasks was the collection and aggregation of colorectal
cancerdataacrossEuropeanbiobanks.13Colorectal cancerwas
selected as it is one of the most prevalent neoplasms,14 and
most BBMRI-ERIC national nodes already had expertise in this
area through ongoing research programs. The national nodes
are the national biobank networks in each European country
participating in the BBMRI-ERIC network.15 Besides sample
data (such as material type or preservation mode), the data
collection covered patient information regarding diagnostic
and surgical procedures, histopathology, molecular markers,
demographics, planned and performed therapy (e.g., radiation
or chemotherapy), and outcome. The goal was to make these
anonymous data available on the BBMRI-ERIC platform after
collection and validation. This processwas known as the Colon
Cancer Data Collection (CCDC) within ADOPT BBMRI-ERIC.16

Objectives

Consolidating the heterogeneous biobank data into the com-
mon format required the data to be processed in a systematic
way. One of the ADOPT BBMRI-ERIC work packages was
focusing on the development of a data integration and
harmonization toolkit to support this extract-transform-
load process (ETL, also see refs. 17–19). It had to be able to
convert the biobank data semiautomatically into a format
ready for import into the central CCDC database.

In thisarticle,wedescribethisdataharmonizationapproach
andreportontheexperiencesgainedwhile integrating thedata
from 10 European biobanks. In particular, we analyze the
quality of the semiautomatic mapping approach and report
on the results of the ETL process.

Methods

Overview
The ADOPT BBMRI-ERIC project used an installation of the
software Open Source Registry System for Rare Diseases (OSSE,
Open-Source-Registersystem für Seltene Erkrankungen)20 as
collection system for the CCDC data. OSSE is a case report
form (CRF) system that generates forms for data entry by using
standardized data element definitions from the Samply.MDR
metadata repository (MDR).21Both applications are part of the
Samply software environment,22 for which expertise was
available within the BBMRI-ERIC community and which is
also used in other projects.11,23–25 It allows for manual data
entry via the CRFs to enable the participation of those bio-
banks, which are only able to provide data manually, but also
provides an application programmable interface (API) for the
automatic import of XML-encoded data.

The lattermethodwaspreferred as it helps avoiding errors
thatmay occur when copying datamanually. The ETL process
for this task should fulfill the following requirements:

1. The overall ETL process has to provide a generic input
interface for the data originating from the biobanks to be
compatible with the wide range of data formats.

2. It has to support the semantic translation of data elements
and value sets from the biobank data into the target CCDC
terminology as defined in the MDR.

3. It has to convert the biobank data into the XML import
format as required by OSSE. Since biobanks might provide
data in a completely different format, complex syntactic
conversions need to be supported.

To address thefirst requirement, we specified two easy-to-
generate input file formats for the ETL process, in which the
biobanks could provide their data. The first one is a comma
separated valuefile format, which follows the principles of the
Entity-Attribute-Value (EAV) data modeling approach, as
shown in ►Table 1 and described in more detail in refs. 26
and 27. It enables the provision of multiple instances of
individual data elements, such asmultiple locations of metas-
tases. Thesecondone is aflatfile format.As shown in►Table 2,
it uses one row per patient and encodes multiple instances
within single cells, separated by semicolons (see highlighting).

The goal of the second and third requirementwas to convert
the biobank data into the target XML format, while adhering to
the semantics of the target terminology with a mapping and
transformation process that requires minimal human inter-
vention. As already mentioned, the MDR contained a detailed,
machine-readable description of the CCDC data elements (see
ref. 28), which not only serves the automatic OSSE form
generation, but also defines the contents and data types that
may be utilized in an OSSE import XML file. We asked the
biobanks to provide the same standardization by using the
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MDR for the description of their data items while adhering to
the MDR data types. This approach helped us to achieve our
third requirement by facilitating the comparison and transla-
tion between the two data sets, semantically and syntactically:
A semiautomaticmapping process could helpfind correlations
(semantically) between both metadata definitions, and a data
transformation process could use this mapping information to
transform the original biobank data (syntactically) into the
target OSSE XML representation.

►Fig. 1 outlines the architecture of our ETL approach and
its integration with the Samply.MDR (on top) and OSSE (on
the right). As indicated with the two big arrows, it processes
either an EAV or a flat file and generates an XML import file,
compatible with the OSSE system. The smaller arrows rep-
resent the data flows processed by our implemented soft-
ware tools: MDRExtractor, TablePreprocessor, MDRMatcher,
MappingGUI, and ETLHelper. The following section describes
these programs and their role in the ETL process.

The BBMRI-ERIC ETL Approach

Metadata and Data Extraction
As a first step, we implemented the MDRExtractor program,
which recursively extracts data elements, data types, value
sets, and hierarchical information from MDR project name-
spaces via the MDR’s REST API. The extracted information is
stored in what we call metadata definition files. These are
cached representations of the MDR’s content and are faster to

process by the tools compared with using the REST API of the
MDR. Each namespace is either associated with a biobank’s
local terminology, or the central CCDC terminology. For the
biobank namespaces, theMDRExtractor generates local meta-
data definitionfiles, whereas for the latter, it produces a central
metadata definition file (see ►Fig. 1).

We introduced support for the flat file format when it
became clear thatmany biobankswouldnot be able to provide
their data in the EAV format. To allow for the integration of
such data, we implemented the program TablePreprocessor. It
analyzes the flat files and converts their contents into the EAV
format. It also generates a simplified localmetadata definition
file by extracting the information from the file’s column
headings. These simplified metadata definition files served
as a fallback solution in such cases where the biobanks would
not enter their local metadata into the MDR.

Lexical Matching
To create the semantic bridge between the biobanks’ local and
the CCDC’s central data elements, it is necessary to create
mappings between the two terminologies. To assist the user in
this task, we implemented MDRMatcher, a tool that matches
the local and central metadata definition files to find similar
data elements. This results in amapping file. This file contains
automatically generated, initial proposals, which we call
matches. For each term in a biobank’s source terminology,
MDRMatcher creates a list of possible matches to the target
CCDC terminology. If MDRMatcher or a human expert consid-
ers one of thesematches to be correct, we call it amapping. To
put it in other words, a match is a mapping candidate.

The implementation of MDRMatcher follows the assump-
tion that if two metadata items contain the same or similar
words, the two must be related. Consequently, the program
compares all items from the source with all items from the
target terminology. One such comparison is shown in►Fig. 2.
After selecting two metadata items (1), one from the local and
one from the central metadata definition file, MDRMatcher
performs a string normalization (2), where the program refor-
mats the strings to uppercase. It also removes nonalphanu-
meric characters and duplicate words.

MDRMatcher then performs what we call semantic expan-
sion (3). By inserting additional words into the strings to be
compared, we augment the metadata entries and support the
program in comparing abbreviations or differently named
concepts. For example, based on the synonym definition “CT
¼ComputerTomography,” thestring “CTDONE” is transformed
into “CT COMPUTER TOMOGRAPHY DONE.” Other synonyms

Table 1 Example for the EAV table format (mock-up data)

Patient ID Concept Value Instance

1 TNM-T T1 1

1 TNM-N N0 1

1 TNM-M M1 1

1 Age 45 1

1 Metastases Hepatic 1

1 Metastases Osseus 2

1 Gender Male 1

1 Date of Surgery 21.07.2013 1

2 TNM-T T4 1

2 TNM-N N0 1

… … … …

Abbreviation: EAV, Entity-Attribute-Value.

Table 2 Example for the flat file format (mock-up data)

Patient TNM-T TNM-N TNM-M Age Metastases Gender Date of surgery

1 T1 N0 M1 45 Hepatic; Osseus Male 21.07.2013

2 T4 N0 M0 34 Female 23.11.2018

3 T2 N0 M1 21 Osseus Male 04.04.2017

4 T1 N1 M1 43 Brain; Osseus Male 19.03.2012

5 T2 N2 M1 76 Hepatic Female 10.09.2013
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defined are, for example, “Sex¼Gender,” “Osseous¼Bone¼
Skeleton,”or “Pulmonary¼ Lung.”Webased thesmall database
on the CCDC terminology, but also integrated other common
medical abbreviations.29

The same technique is also used for tagging metadata items
with positive or negative sentiments. Theoretically, this
improves matches among different positive (e.g., “Yes,” “True”)
or negative value sets (e.g., “No,” “Not,” “False”). As an example,
consider thematch between the source data element “Patient is
alive”withthevalueset {“No,” “Yes”}andthetargetdataelement
“Patient is living” with the value set {“False,” “True”}. Even
though both value sets are different, the sentiment tagging
may support the lexical matcher in finding the correct map-
pings, for example, where “Patient is alive¼NoNeg” is mapped
to “Patient is living¼ False Neg” and “Patient is alive¼Yes Pos”
is mapped to “Patient is living¼True Pos.” In the example
in ►Fig. 2, the word “NOT” was augmented with “NEG.”

MDRMatcher then performs the actual lexical matching (4).
Thealgorithmused isbasedonthebag-of-wordsapproach.30,31

It considers sequences of n successivewords, called n-grams.31

For this, it first determines gmin, which is the lower word count
of the twonormalized strings being compared (in the example,
4). It extracts the setswith all n-gramswith n� gmin from both
sides andputs these into two “bags,” one for the source and one
for the target item. In the next step, the algorithm compares
both bags via exact and fuzzy partial matches (with the latter
not shown in ►Fig. 2). Each of these matches contributes to a
final similarity score. Our approach is based on the assumption
that longerwords and inparticularword sequences carrymore
information than short, individual words; this is why we

calculate the scores using the product of the number of
characters (red) and the gram count (blue). Fuzzy matches
are computed only for single words (n¼1) by calculating the
normalizedLevenshteindistance32 (0...1,with0¼nosimilarity
and 1¼ same string), which is then multiplied with the half-
length of the longer term. As a result, fuzzy matches are
weighted less than exact matches.

The lists of the best matches with a similarity score above
a configurable threshold are then stored in a mapping file.
The correct choice of the threshold prevents, on the one
hand, that too many unnecessary (wrong) proposals are
shown (a threshold of 0 would propose all target terms,
sorted by relevance) and, on the other hand, that a correct
proposal is not shown. When the methodwas prototyped on
the data supplied by the first biobank, it was found that a
threshold of one-third of the highest similarity score provid-
ed the best results. This value was then used for processing
the data of all other biobanks.

MDRMatcher also automatically suggests the best match
as amapping if thehighest similarity score is higher than that
of the second best match. If multiple top matches share the
same similarity score, the program is unable to decide which
one is better, and leaves the decision to the human expert.

Curation of Mappings by Human Experts
Human experts, typically the persons responsible for the
data at thebiobanks, have to complete, verify, and potentially
correct the mapping file generated by MDRMatcher. To
support this process, we developed a graphical user inter-
face, MappingGUI, as shown in ►Fig. 3.

Fig. 1 The extract-transform-load (ETL) pipeline as configured for the ADOPT BBMRI-ERIC project, shown for two exemplary biobanks, one
contributing an Entity-Attribute-Value (EAV) and the other a flat file. The files are extracted from the Biobank Information Management Systems
(BIMS, left), processed by our tools into an XML file, and finally loaded into the OSSE system (right). CMF, central metadata definition file; LMF,
local metadata definition file.
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The program displays the source terminology from the
biobank on the left, and the mapping proposals from
MDRMatcheron the right side of thewindow. The tooldisplays
mappings curated by human experts in green, and mappings
proposed byMDRMatcher in yellow. Otherwise, the tool high-
lights entries in red to indicate that only lexical matches from
MDRMatcher are available. The expert can then either approve
or correct a mapping by selecting another term from the right
side. If the correct termwas not among the proposals, the user
can open a searchwindowand search for the correct term. It is
also possible to remove mappings via the “Remove mapping”
button for cases where no mapping exists.

Transformation of Instance Data
The last program in the ETL pipeline is ETLHelper, which
processes the mapping and EAV file containing the patients’
instance data and then generates the OSSE XML import file.
This step comprises replacing the source value sets with
those from the target terminology, as well as converting
between different data types according to the expert-curated
mapping rules. The implementation of the ETLHelper uses an
internal SQLite database33 to efficiently sort, filter, and align
the data. A single SQL join statement merges the data from
the EAV file, the mapping file, and the metadata definition
files, thereby creating the semantic bridge between the

biobank’s data and the CCDC’s target terminology. Finally,
the program steps through the SQL results, performs the data
type conversions, and populates the OSSE XML file with the
transformed biobank data. The generated XML file can then
be imported into the OSSE system.

As our ETL approach is based on the foundation of
Samply.MDR’s semantics, we only had to consider the conver-
sion between eight different data types, as shown in►Table 3.
Translations between simple value sets, represented in the
MDRvia thedata type “Enumerated,”arehandled in theabove-
mentionedSQLstatementbyreplacing theoriginalvalueswith
thoseof the target terminologyaccording to themapping rules
in the mapping file. This is the case for example for the
mapping “VITAL_STATUS¼ALIVE¼> Vital status and survival
information / Vital status¼person is still alive.” Here, the
translationmethodbetween “Enumerated”and “Enumerated”
from ►Table 3 applies, and ETLHelper replaces the original
“ALIVE” cell entries in the biobank data with “person is still
alive.” When populating the XML file with the instance data,
ETLHelper puts these entries into the respective location in the
XML file, as defined in the CCDC namespace in theMDR (Vital
status and survival information / Vital status). The translations
between other data types are done following common sense,
as shown in►Table 3. If, for example, a float is to be converted
intoan integer,we round it to thenearest integer. To translate a

Fig. 2 Illustration of the bag-of-words algorithm in MDRMatcher. After normalization and semantic expansion, it compares all n-grams from the
source and the target item and computes a similarity score.
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Boolean to integer, we convert the Boolean “True” to 1 and the
Boolean “False” to 0.

The implementation is robust in the sense that it can
automatically parse dirty (but correct) data in different date
or number formats. However, as indicated by the empty cells
in ►Table 3, we do not support all types of transformations.
For example, we do not attempt to recognize non-string data
(such as time stamps) in strings, and therefore do not offer
converting a string into another data type. Whenever the
parsing of a data record fails or the mapping contains an

unimplemented transformation rule, the user is notified
with an error message.

Results

The ETL approach described abovewas used to implement the
data harmonization for the CCDC in the ADOPT BBMRI-ERIC
project. From14participatingbiobanks(asofNovember2018),
10 were unable to generate the OSSE XML file themselves.
Instead, they extracted and anonymized relevant data from

Fig. 3 The MappingGUI program, which is used to curate mappings between source and target terms and values.

Table 3 Supported data type transformations, with source data types shown on the left and target data types on top

From/To Enumerated Integer Float Boolean
(True)

Boolean
(False)

String Date DateTime

Enumerated Target value True False Cast to
String

Integer Pass
Through

Cast to
Float

if¼ 1 True if¼ 0 False Cast to
String

Float Round to n.
Int.

Pass
Through

if¼ 1.0
True

if¼ 0.0
False

Cast to
String

Boolean
(True)

Target value 1 1.0 Pass
Through

False Cast to
String

Boolean
(False)

Target value 0 0.0 True Pass
Through

Cast to
String

String Pass
Through

Date Cast to
String

Pass
Through

Date Only

DateTime Cast to
String

Date Only Pass
Through

Note: Italics indicates the type of handling, bold the return value. Blank indicates no transformation rule.
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their source systems and converted them into the flat file
format. These files were then collected via a secured Web
portal, the CCDC Uploader, and the ADOPT BBMRI-ERIC IT
personnel was notified about new uploads. It downloaded
thefiles andperformed initial data quality checks to assess the
overall suitability for the CCDC. They also resolved easily
correctable problems, such as minor formatting or encoding
errors; however, when major changes in data were necessary,
the biobanks were consulted. The IT personnel then created
the mappings in close collaborationwith the biobank experts.
In most cases, it was clear how the mappings were to be
created; however, in other cases the biobank data experts had
to be consulted. Thefinalmappings, whichwe also used as the
“gold standard” for the evaluation of MDRMatcher as de-
scribed below, were finally approved by the biobanks. The
biobanks were constantly informed about interim ETL results.
The XML files produced by ETLHelper were XSD-validated and
uploaded into the OSSE system. Finally, the biobanks were
given the opportunity to review their data in theOSSE system.

Data Received
During this task, we observed different types of problems
with the biobank data. Manyof themwere identified directly
by the BBMRI-ERIC IT personnel upon receiving the datafiles,
but most were detected later in the process through mech-
anisms implemented into the harmonization tools.

Shifted tabular datawas themost commonproblem,which
we attribute to copying and pasting of data. This could also
have been the cause of other formatting problems, such as
inconsistentupperand lowercaseor spacesat thebeginningor
end of cell entries. Character encoding errors, which were
potentially causedbyoffice software, also occurred frequently.

The 10 biobanks made great efforts to provide as much
information as possible. Unfortunately, this also means that
they were reluctant to leave table cells empty, even where
this would have been appropriate. Entries, such as “Un-

known,” “Not available,” or “N/A” were used frequently, but
also more uncommon values, such as “ND” for “not done.”
The biobanks also used textual entries in numerical and date
fields, which, as expected, led to data rejections in ETLHelper.
This is the desired behavior of the software, because such
entries do not contribute any relevant information.

Analysis of Lexical Matching
We usedMDRMatcher tomatch themetadata items from the
10 biobanks to the target CCDC terminology. To assess the
quality of this process and to be able to improve our approach
in the future, we compared the program’s output against the
final, expert-curated mappings. We designed a four-axial
classification scheme to categorize the behavior of
MDRMatcher on a per-source-item basis. It is comprised of
the four dimensions conceptual, mapping, correctness, and
matching, as illustrated in ►Fig. 4.

The conceptual dimension describes whether a source data
itemhas an equivalent in the target terminologyor not. In other
words, itdescribesonaconceptual levelwhether amapping can
be created. This can be easily determined in the final mapping
file (the “gold standard”) by checking whether the human
experts left a mapping blank or checking whether the expert
kept,modified, or removedaproposedmapping. If therewas an
equivalent item in the target terminology, it can be analyzed
whetherMDRMatcher has created amapping or not, whichwe
capture in the mapping dimension. The correctness dimension
evaluates whether this mapping is correct or not by comparing
the proposed mapping with the expert-curated mapping. The
matching dimension determines whether the correct item from
the target terminology was among the list of matches, or
whether it has been cut off because its score was below the
implemented cut-off threshold.

Each of these four dimensions can be answered with “Yes”
or “No” (see►Fig. 4), and as such, a combinationwould result
in 24¼16 classes. However, only seven of these are applicable

Fig. 4 A four-axial classification scheme to assess the mapping quality of MDRMatcher.
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in practice, as some of them do not make sense. For example,
an automatically createdmapping cannot be correct if there is
no equivalent item in the target terminology. The seven valid
classes are, ordered from “good” to “bad”:

1. A mapping was created and was correct.
2. Nomappingwas created, which is correct because there is

no equivalent item in the target terminology to map to.
3. No mapping was created, but should have been. At least

the correct term was in the list of proposals, which later
support the curation process by the human expert.

4. A mapping was created, but it was wrong. The correct
item was in the list of proposals.

5. A mapping was created, but it was wrong. The correct
item was not in the list of proposals.

6. A mapping was created, which is wrong, because there is
no equivalent item in the target terminology.

7. No mapping was created, but should have been. The
correct term was not in the list of proposals.

In the next step, we classified the mappings generated by
MDRMatcher according to these seven classes. The Mapping-
GUI program kept track of all modifications to the mapping
files and thus allowed us to automatically compare the
software-generated mappings with the final, expert-curated
ones. The result is shown in ►Table 4. In total, we matched
1,492biobank source items to the226 target itemsof theCCDC
target terminology. As shown, 77.21%þ1.27%¼78.48% of all
automatically generated mappings by MDRMatcher were

correct (classes 1 and 2). For 20.24%, the correct mapping
was among the suggestions and could be selected easily in
MappingGUI by the human experts (classes 3 and 4). In other
words, 98.72% of the mappings were correct or easily correct-
able (classes 1–4) with our tools. In only 1.27% (classes 5–7) of
all cases, the correct target item was not among the list of
suggestions and had to be looked up manually.

Based on ►Table 4, it is possible to derive additional
standard metrics to evaluate MDRMatcher’s role as an auto-
matic mapper. Based on a confusion matrix as shown in
►Table 5, it is possible to calculate the precision, recall, and
F1 score:

We then analyzed why MDRMatcher did not succeed in
finding the correct mappings for the terms in classes 3 to
7, with a deeper analysis of classes 3 to 5. The results for the
classes 3 to 5 are summarized in ►Table 6.

The most common type of wrong behavior in
MDRMatcher could be traced back to a lack of synonym
definitions, for example, for “ND” (“Not Done”) or “X” (“Lung
Imaging,” as in “X-ray”). Defining these commonly used
words in the synonyms database would have resulted in
correct automatic mappings.

Table 4 Assessment of the automatic mapping quality for metadata items received

Property Class

1 2 3 4 5 6 7

Dimension Conceptual
(Equivalent in Target?)

Yes No Yes Yes Yes No Yes

Mapping
(Created A Mapping?)

Yes No No Yes Yes Yes No

Correctness
(Correct Behavior?)

Yes Yes No No No No No

Matching
(Among Proposals?)

Yes No Yes Yes No No No

Source Item
Counts

Biobank 1 163 10 17 11 2 2 0

Biobank 2 121 1 21 17 0 1 0

Biobank 3 83 7 36 14 2 1 2

Biobank 4 94 0 12 8 2 0 0

Biobank 5 89 0 14 13 0 1 0

Biobank 6 117 0 7 9 0 0 0

Biobank 7 142 0 17 18 1 0 0

Biobank 8 117 0 18 12 2 0 1

Biobank 9 97 1 12 18 0 0 0

Biobank 10 129 0 16 12 1 1 0

Total 1152 19 170 132 10 6 3

Percent 77.21 1.27 11.39 8.85 0.67 0.40 0.20

Note: The numbers are per source item, which is comprised of concept and value, e.g., “UICC_STAGE¼Not known.”
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Similarly, the missing ability of down-ranking metadata
items in the matching algorithm has often proven to be a
problem. MDRMatcher uses only matches to increase (or up-
rank) the similarity score, but it does not consider “non-
matches”; that is, text passages that do not occur on both sides.
Forexample, for thesource item “MM_MISMATCH_REPAIR_GE
¼EXPRESSION,” the matcher could not decide if “Molecular
markers / Mismatch repair gene expression¼Expression” or
“Molecular markers /Mismatch repair gene expression¼ Loss
ofexpression” is thecorrectmatch. Inboth cases, the algorithm
found the same partial matches (as indicated in bold) and thus
calculated the same similarity score, but the additional infor-
mation (“Loss of …”) was not considered.

The implemented n-gram-based matching approach theo-
retically allows hierarchical information to be taken into
account, because all metadata items to be matched are built
using strings in the form “HierarchyPath /… / Concept¼Value,”
from generic to specific. In practice, however, this sometimes
led to the exact opposite effect. As the slashes (/) and equal
signs (¼) were removed from the data during preprocessing,
misleading matches across these components occurred. For

example, “DIAG_MRI_DONE¼Not done” was incorrectly
matched to “Diagnostic exam /MRI¼Done, data not available”
instead of the correct “Diagnostic exam / MRI¼Not done.”

Wrong up-rankings due to incorrect additional fuzzy
matches were another common problem. For example, the
International Classification of Diseases, Tenth Revision (ICD-
10) code “C 19”was incorrectlymapped to “C 19.9” instead of
the correct “C 19,” because in addition to the correct 2-gram
match between “C 19” and “C 19,” the tool incorrectly created
a second fuzzy match between “19” and “9.”

The removal of redundant words during the preprocess-
ing, which we believed prevented overfitting, also caused
problems in practice. For example, MDRMatcher incorrectly
proposed mappings between NRAS and KRAS, due to a fuzzy
match between “NRAS” and “KRAS” and the removal of
duplicate words in the hierarchy during text preprocessing.
“NRAS” and “KRAS” were part of the hierarchical grouping
(e.g., “Molecular markers / KRAS mutation status / NRAS
exon 2 [codons 12 or 13]¼Not mutated”) in the MDR. This
combined type of error affected 9 biobanks and could have
been prevented if the text preprocessing would not have
removed duplicate words.

MDRMatcher proposed some wrong mappings because it
failed to match Roman to Arabic numbers (e.g., for the UICC
stages). Bad spelling or inconsistent naming (also within the
CCDC target terminology) also led to incorrect mappings. For
example, the ICD-10 code “C18.0” was mixed up for surgery
and histopathology due to inconsistent writing of “caecum”

(vs. “cecum”) in the CCDC target terminology. Similarly, the
misspelled value “3th”was mapped to “4th,” because for the
Levenshtein algorithm “3th” is closer to “4th” than “3th” is to
“3rd.”

Finally, MDRMatcher was not able to map certain biobank
terms to “Other” values in the target terminology. Thiswas the
case, for example, when a biobank specified metastasis local-
izations for which there were no equivalent entries in the
target terminology. This iswhere thesoftware simply lacks the
intelligence to make the correct assignment to “Other.” As a
result, the human expert must complete the mappings.

Class 6 errors (mapping despite no representation in target
terminology) were incurred, because the lexical matcher
always proposes the “best” match as a mapping if its score is
higher than the second-best matching. For example, for
“UICC_STAGE¼Not known” it incorrectly proposed “Histopa-
thology / UICC staging / UICC version¼Not known.”

Class 7 did not contain enough mappings to discern any
recurring pattern.

Table 6 Analysis of wrong behavior of MDRMatcher per target
data element in classes 3 to 5 for metadata items

Type of problem Class 3 Class 4 Class 5 Total

Missing synonyms 22 22

No down-ranking 21 21

N-gram matching
across hierarchy/
concept/value

3 6 4 13

Wrong up-ranking
due to bad fuzzy
matches

3 8 11

Unfavorable removal
of redundant words

3 8 11

Inability to compare
Roman with
Arabic number

1 8 9

Use of different
languages

5 5

Spelling errors or
inconsistent naming

5 5

Unable to map
something to “Other”

2 2

Other 4 12 18

Table 5 Confusion matrix for the evaluation of MDRMatcher as an automatic mapper

TPþ FN
Should create mapping
1171

FPþ TN
Should not create mapping
321

TPþ FP
Created mapping
1300

TP
Created mapping, correct
1152

FP
Created mapping, wrong
132þ 10þ 6¼ 148

FNþ TP
Did not create mapping
192

FN
Did not create mapping, wrong
170þ 3¼173

TN
Did not create mapping, correct
19
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Analysis of Data Transformation
We used the user-validated mappings to transform the
biobank data into the XML import format. ►Table 7 summa-
rizes thewhole ETL process for the data of the 10 biobanks. In
total, we were able to process 98.7% of 147,608 data records
from 3,415 patients. As we will describe later, we consider
the remaining 1.3% as correct rejections.

►Table 7 consists of four sections. The first one describes
the input data. When loading the biobank data, ETLHelper
first counts the number of patients (row1) and the number of
data records, the number of nonempty cells in the original
flat file (row 2). The number of different concepts (row 3)
corresponds to the number of columns in a flat file, whereas
the source items count (row 4) is the number of concept-
value combinations. The second section (rows 5–9) describes
the availability ofmapping-rules, where ETLHelper evaluates
for how many of the data records (not metadata items) a
mapping rule can be utilized to transform the actual patient
data. A low percentage in row 8 indicates that a biobank’s
data did not match the target terminology well, or that the
mapping needs to be revised. The third section (rows 10–21)
summarizes the number and kind of data type validations
and transformations utilized. Finally, row 22 outlines the
total percentage of records that we were able to transform
into the target CCDC representation.

Although the ETL process delivered overall good results,
where most biobanks achieved a transformation rate of or
close to 100%, we were interested in what happened in the
remaining cases. We therefore analyzed two aspects: First,
why the human expert did not map a source data item,
and second, why certain data type castings resulted in errors.

As mentioned above, many biobanks (1, 2, 3, and 9)
provided datawith “unknown” values that did not contribute
any useful information. Examples are entries such as “UICC_-
STAGE¼Not known” or “WHO_GRADE¼Not known.” Addi-
tionally, biobank 1 provided data for a data element
“Targeted Therapy Scheme” with nine enumerated values,
which was not collected in the CCDC. Similarly, biobank 5
contributed entries with “Localization of primary tumor¼
C18.9,” which were outside of the inclusion criteria of the
colorectal cancer cohort. Such entries were deliberately
unmapped by the human experts and thus appear
in ►Table 7 as data records that do not have a mapping
(row 9). ETLHelper then rejected these unmapped data.

Similarly, the root cause for the data type casting errors
(rows 18–20), which affected “INTEGER” and “DATE” entries,
was the utilization of string values for numeric data types, in
most cases entries such as “Unknown.”As these could not be
parsed as numeric values or timestamps, ETLHelper correctly
rejected them.

Discussion and Outlook

Explanation of the Results
ADOPT BBMRI-ERIC was facing the challenge of supporting a
cross-intuitional data collection project, the CCDC. From the
beginning it was not clear in which format the biobank data
would be provided, therefore we defined two simple file

formats.We sought to convert these data into a representation
that could be imported into a central research database via a
generic ETL approach. We successfully supported this process
via a semiautomatic matching approach, as implemented in
MDRMatcher. It correctly mapped 78.48% of the 1,492 local
biobank terms from 10 European biobanks, achieving a preci-
sion of 0.89, a recall of 0.87, and an F1 score of 0.88. With
ETLHelper, the actual instance data transformation tool, we
successfully processed 147,608 data records from 3,415
patients.

These numbers must be read with caution, however. For
example, it has to be considered that the biobanks were
informed in advance which data elements are collected in
the CCDC. We do not know to what extent they had prepro-
cessed their data, but inmany cases the designators of the data
elements and value sets were largely identical to those in the
CCDC. Differences in data preprocessing could also explain the
different mapping results for the individual biobanks. Similar-
ly, the achieved data transformation rate of the instance data
with ETLHelper is not surprising, as experts curated the
mappings in an iterative process. Rather, thesefigures confirm
that the implemented ETL approach succeeded in successfully
transforming the biobank data into the OSSE import format.

Comparison with Related Research
Supporting information integrationvia automationhas awell-
established background in research. In particular, schema and
instance matching techniques have been thoroughly investi-
gated in the past (e.g., see refs. 34–38). Some use advanced
background knowledge to improve matching results, such as
ontologies.39 These approaches aim to provide generic frame-
works and may therefore require the utilization of additional
techniques, such as metadata discovery.40,41 Similar techni-
ques are used in thefield of ontologymatching.42,43According
to Euzenat and Shvaiko,43 MDRMatcher can be classified as a
string-basedmatcher that incorporates some informal resour-
ces, such as the synonyms database. The evaluation results of
MDRMatcher are similar to those of other matchers (see, e.g.,
refs. 44 and 45). However, as already stated above, these
numbers must be interpreted with caution. To fully compare
the results, we would have to evaluate MDRMatcher with a
knowndata set, as done in, e.g., Kock et al46 andAchichi et al.44

In the biobanking field, we are aware of only a few similar
works. Pang et al presented two related methods for mapping
biobank data.45,47 Both are based on lexical matching and use
synonyms. Compared with our work, the authors start sup-
porting the data collection and harmonization process at an
earlier stage by implementing an initial search of the desired
research data elements in the source systems. The authors do
this by matching from the target terminology to the source
terminology (another reasonwhy their metrics are not direct-
ly comparable to ours). Adopting this approach could also be
useful for the future of BBMRI-ERIC, where larger data sets
need to be recognized for future project purposes from
biobank databases. However, it must be clarified whether
and in which format biobanks could provide their complete
metadata. Based on our experiences from the CCDC, this could
prove to be very challenging.
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Limitations and Future Work
The matching algorithm in MDRMatcher was not modified
throughout the execution of the CCDC to generate consistent
results. However, certain peculiarities in the behavior of the
matching component were identified in our analysis, and
these need to be taken into account in future revisions of the
program. For example, we will have to extend the program’s
synonyms database, integrate functionality for down-rank-
ing, and preventmatches across the components ofmetadata
items (hierarchy, concept, and value). As identified in our
analysis, simple improvements of the fuzzy matcher (e.g.,
preventing fuzzy matches across numbers) and deactivating
the removal of redundant words should also improve the
results further.With regard tomissing synonyms, a potential
solution could be to use BioPortal ontologies48 as a source for
synonym definitions, as implemented by Pang et al.

The analysis of MDRMatcher’ results in the “Analysis of
Lexical Matching” section is very detailed, but still has its
limitations. For example, we did not analyze in detail the
impact of synonyms and sentiment tagging—we only noticed
afterwards that synonym definitions were missing. If we
succeed in integrating further terminological resources as
described above, such aspects should also be analyzed in
future research.

Considerationmustalsobegiven to thedata transformation
part as implemented inETLHelper. Althoughour approachwas
designed to process unstandardized data, it makes sense to
investigate how it can efficiently handle data that is already
standardized (e.g., ICD-10 or ICD-O-3 codes). Here, one could
possibly reusealreadyexistingmappings fromontologies (e.g.,
UMLS,49 OxO50) and other mapping resources (such as
between SNOMED CT and ICD-1051). This would avoid the
lexical matching of already standardized, mapped terms.

ETLHelper does not yet support automatic unit conver-
sion. This feature was not required in the CCDC, but support
for it would be useful, for example, for supporting laboratory
parameters. Because Samply.MDR supports storing units,
conversion rules could potentially integrated into ETLHelper.

The ETL method presented in this article only supports
1:1, but no n:1 mappings. In other words, there is currently
no possibility to merge information from multiple data
elements in the source terminology into one data element
of the target terminology. This was sufficient for the CCDC,
because small calculations could be done directly in the flat
files (such as the calculation of the patient age at diagnosis).
The definition of machine-interpretable, complex mappings
has already been investigated in the past (see, e.g., Mate
et al52). The German Biobank Node and German Biobank
Alliance projects,10,23,53 which are working on establishing
the German national node for BBMRI-ERIC and whose mem-
bers are active contributors to the Samply software environ-
ment, are currently discussing how the MDR could be
extended to store such transformation rules.

Generalizability of Our Method
The approach presented here is not limited to the biobanking
domain. The individual steps of the ETL process were imple-
mented using modular software components to enable the

logical separation of the individual tasks. Each tool can beused
independently from the others. As such, the MIRACUM proj-
ect25 is currently investigating whether MDRMatcher can be
used tomap local laboratory terms to the LOINC standard.54As
part of this work, MDRMatcher has been extended with
multithreading capabilities and a new matching algorithm
that considers word frequencies to up-rank rare and down-
rank frequent words. The implementation of ETLHelper is still
geared toward generating an OSSE XML import file, but
modifying the source code allows for generating other output
formats as well. ETLHelper uses the EAV format internally to
represent the instance data, and as such, the processed data
can be transformed into any output format.

During the CCDC it became apparent that the creation of
metadata in theMDRwas a challenging task for thebiobanks.
We attribute this to the fact that the use of the MDR is
initially complicated and time-consuming. Since it was
hardly used by the biobanks (and if it was, then often
incorrectly), we developed the workaround of extracting
the reduced metadata from the flat files. Although this has
worked well for the CCDC, it is unlikely to be sufficient in a
future context. Due to the increased complexity and hetero-
geneity of upcoming research scenarios, semantically richer
metadata will be required. An important finding is that
organizational and administrative aspects must be given
even more attention in advance. For BBMRI-ERIC this means
that it will have to ensure that biobanks routinely maintain
their metadata in the MDR. In addition, as target terminolo-
gies will continue to evolve, a workflow will be required to
enable biobanks to keep their mappings up to date.

Conclusion

The reuse of biomedical data for research is a challenging
task, especially when data from multiple sources are to be
merged. These challenges arise, one the one hand, from
syntactic and semantic differences in the source data, and
on the one hand, from potential data quality issues.

We presented an ETL approach for the integration of
heterogeneous data that provided good results in the CCDC
use case. On the one hand, the lexical matching process in
MDRMatcher did most of the work of identifying the correct
mappings, with the bag-of-words algorithm achieving a fully
automatic, correct mapping almost 80% of the time. On the
other hand, the generic approach of data type conversion in
ETLHelperproved tobesuitable forperforming thesubsequent
data transformations and for detecting errors in the biobank
data. The approach has thus provided considerable support to
the CCDC of ADOPT BBMRI-ERIC to date.

The source code of our tools, including full documentation
and a small demo data set with artificial data, is available
under the GPL3 license on GitHub: https://github.com/seb-
mate/ADOPT-BBMRI-ERIC-ETL-Tools.

Clinical Relevance Statement

The collective analysis of patient data and biomaterials
is becoming increasingly important. The use of uniform

Applied Clinical Informatics Vol. 10 No. 4/2019

Data Harmonization in ADOPT BBMRI-ERIC Mate et al.690

https://github.com/sebmate/ADOPT-BBMRI-ERIC-ETL-Tools
https://github.com/sebmate/ADOPT-BBMRI-ERIC-ETL-Tools


metadata simplifies this process, as the data can be uniformly
checked and processed by only a few software components.
In this article, we report on a working, largely automated
approach for merging heterogeneous biobank data.

Multiple Choice Questions

1. When collecting the ADOPT CCDC data from the different
European biobanks, what was the most common problem
associated with the biobanks’ data quality?
a. Missing or erroneous data.
b. Missing synonym definitions.
c. Copy and paste errors.
d. Encoding errors.

Correct Answer: The correct answer is option c. Shifted
tabular data was the most common problem, which we
attribute to copying and pasting of data.

2. Sentiment tagging can improve the matching quality by
a. Up-ranking positive and down-ranking negative terms.
b. Up-ranking negative and down-ranking positive terms.
c. Creating matches between different positive and nega-

tive terms.
d. Creating matches between different positive or nega-

tive terms.

Correct Answer: The correct answer is option d. Senti-
ment tagging “forces” the matcher to create matches only
between two positive or between two negative terms.
This reduces the likelihood of a match being created
between a positive and a negative term.
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