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Various alloys such as gold alloys, silver alloys, 
and cobalt-chromium alloys are used for dental 
applications.1 Alloys with similar appearance can-

not always be distinguished once they are cast or 
machined, and the alloys lose their original form 
or markings. Alloy sorting (identification) of pros-
theses made of unknown alloys is necessary when 
additional prostheses are required over the ex-
isting ones; the chemical composition of the new 
prosthesis must match that of the existing one to 
minimize the risk of galvanic corrosion. Alloy sort-
ing is also important to identify metallic allergies. 
Unwanted mixing of alloys can lead to problems if 
the alloys are reused in dental laboratories.  

The most reliable method for identifying a solid 
alloy is to carry out elemental analysis using so-
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phisticated and rather expensive instruments 
such as an X-ray photoelectron spectrometer and 
an electron probe microanalyzer. These instru-
ments cannot be used intraorally; thus, to analyze 
the prosthesis alloy, a certain amount of sample 
must be removed from it. Therefore, a portable 
device that uses a non-destructive and rapid iden-
tification technique is desirable. Such devices are 
called metal testers or alloy sorters; they are 
commercially available and are used in industrial 
applications.2,3 These devices typically use ther-
moelectric methods to measure the thermal elec-
tromotive force (EMF).  

When two different metals are connected in a 
loop, the thermal EMF is determined from the ther-
moelectric power (measured in units of V K–1 and 
refers to the voltage difference per unit increment 
in temperature) of the metals and the tempera-
ture difference between the two junctions. If the 
thermoelectric power and the temperature of one 
of the two junctions are known, the thermal EMF 
can be used to determine the other junction tem-
perature. This principle is the same as that of tem-
perature measurements using a thermocouple.4 If 
the temperature difference is known, the thermal 
EMF can be used to determine the thermoelectric 
power of a combination of two metals. It should 
be noted that the thermal EMF is not affected by 
the shape or size of the metals. The determination 
of thermoelectric power can be applied to alloy 
sorting; for this, it is important to develop a table 
that includes the thermoelectric powers of various 
dental alloys measured against a standard metal.  
The measurement of the thermal EMF requires 
a simple direct-current circuit. The limitation of 
this approach is that alloys with the same ther-
moelectric power need not necessarily have the 
same chemical compositions. However, when the 
number of different types of alloys tested is lim-
ited and their thermoelectric powers differ signifi-

cantly, alloy sorting by the thermal EMF measure-
ment can be practically feasible. Another concern 
about this method is its intraoral application when 
the thermoelectric power of the alloy is low; in-
traoral application in this case is difficult because 
it is necessary to achieve a high temperature dif-
ference between the junctions to obtain sufficient 
voltage against the background noise.  

Thus far, a method to predict the thermoelec-
tric power of an alloy on the basis of its chemical 
composition has not been proposed. On search-
ing various literatures, I found no reports on the 
thermoelectric properties of dental alloys. The hy-
pothesis to be tested in the present study is that 
the dental alloys exhibit significantly different and 
high thermoelectric power values, and this prop-
erty can be used in alloy sorting. The thermoelec-
tric powers of six silver-colored commercial den-
tal-casting alloys were determined to verify the 
feasibility of dental alloy sorting by thermoelectric 
method.

  
MAtErIALs And MEtHods
Preparation of specimens
The six dental-casting alloys used in this study 

include two silver alloys (Miro 3 (M3) and Casting 
Silver S (CS), GC, Tokyo, Japan), one gold-silver-
palladium alloy (Castwell M.C. 12% Gold (CW), 
GC), one cobalt-chromium alloy (Cobaltan (CO), 
Shofu, Kyoto, Japan), one nickel-chromium alloy 
(Dent-Nickel (DN), Shofu), and one titanium alloy 
(T-Alloy Tough (TA), GC); these alloys are summa-
rized in Table 1. To prepare the specimens of these 
alloys (diameter: 2 mm, length: 30 mm), a rod pat-
tern (diameter: 2 mm) was invested. A cristobalite 
investment (Cristoquick 20, GC) was used for the 
low casting-temperature alloys (M3, CS, and CW). 
A phosphate-bonded investment (Ceravest G, GC) 
was used for CO and DN. A magnesia investment 
(Selevest CB, Selec, Osaka, Japan) was used for 

Alloy (Specification) Product name Abbr. Main components, mass%

Silver alloy (JIS T6108 Type 1) Miro 3, GC M3 Ag: 77%, Sn: 18%, Zn: 5%

Silver alloy (JIS T6108 Type 2) Casting Silver S, GC CS Ag: 70.5%, In: 24%, Zn: 2.5%, Pd: 1%

Gold-Silver-Palladium alloy (JIS T6106 Type 2) Castwell M.C., GC CW Ag: 46%, Pd: 20%, Cu: 20%, Au: 12%

Cobalt-Chromium alloy (JIS T6115) Cobaltan, Shofu CO Co: 63%, Cr: 29%, Mo: 6%

Nickel-Chromium alloy (NA) Dent-Nickel, Shofu DN Ni: 63%, Cr: 15%, Nb: 5%, Mn: 5%

Ti-6Al-7Nb (ASTM F1295) T-Alloy Tough, GC TA Ti: 86.5%, Al: 6%, Nb: 7%

Table 1. Dental casting alloys used in this study and their chemical compositions (catalog value).
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TA. The molds for the specimens were burnt out 
according to the investment and alloy manufac-
turers’ instructions. The alloys with low casting 
temperatures were cast into the molds using the 
dental casting unit Caspak C602 (Dentronics, To-
kyo, Japan).  The dental casting unit Argoncaster-
C (Shofu) was used for CO and DN, while a tita-
nium casting unit (Ticast Super R, Selec, Osaka, 
Japan) was used for TA. After casting, the molds 
were bench cooled. Three specimens were pre-
pared for each alloy.  

Determination of thermoelectric power
The thermal EMF of the specimens was mea-

sured using the apparatus shown in Figure 1; 
this apparatus was developed in a previous study 
to determine the thermoelectric power against 
constantan.5 The validity of this apparatus is dis-
cussed in the concerned paper. A constantan wire 
(diameter: 1.0 mm, JIS type-T, Hayashidenko, To-
kyo, Japan) was pressed against the specimen un-
der approximately 3 N using a spring. A thin cop-
per wire (VFF 1.25 mm2, single element wire was 
used at a time, diameter: 0.18 mm, KHD, Osaka, 
Japan) was inserted between the specimen and 
the constantan wire. Two temperature sensors 
(LM35CAZ, National Semiconductor, Santa Clara, 
CA, USA) were installed near the cold junctions.  
The specimen-constantan thermal EMF and the 
copper-constantan thermal EMF were obtained 
using a computer with an analog-to-digital inter-
face (DAQCard-6036E, National Instruments, Aus-
tin, TX, USA). The hot junction was heated starting 
from room temperature, which was below 298 K, 
by heating the end of the thin copper wire using a 
gas torch (Handy Torch Ortho, YDM, Tokyo, Japan). 
The temperature of the hot junction was estimated 
from the copper-constantan thermal EMF and the 
average temperature of the two temperature sen-
sors using the formulas for the type-T thermocou-
ple.6 The electric contact areas of the specimens 
and constantan wire were previously ground with 
1000-grit SiC abrasive papers. A new thin copper 
wire was used for every measurement. The mea-
surement was performed three times on each 
specimen.  

A linear least-square fitting was performed on 
the measured thermal-EMF-temperature curve 
to determine the thermoelectric power of each 
specimen against constantan at temperatures 

ranges of 298–303 K (temperature difference ∆t=5 
K), 298–308 K (∆t=10 K), 298–313 K (∆t=15 K), and 
298–318 K (∆t=20 K).  The goodness of the fit was 
examined by calculating the coefficient of deter-
mination (R2).  To test the statistical distinctness of 
the thermoelectric power of each alloy, the results 
were analyzed by one-way ANOVA and the Schef-
fé’s test at a significance level of α=0.01. 

rEsuLts
In the case of each alloy, when the tempera-

ture difference was 5 K, the mean R2 value was 
greater than 0.98. When the temperature differ-
ence was 10 K or more, the mean R2 value was 
greater than 0.99. The thermoelectric power val-
ues of the six dental alloys against constantan in 
the four temperature ranges are summarized in 
Figure 2.  When the temperature difference is 10 K 
or less, the difference between the thermoelectric 
powers of the alloys was not always statistically 
significant (Figure 2 (a), (b)). As the temperature 
difference increased, the standard deviation de-
creased.  When the temperature difference was 
15 K and more, the thermoelectric power values 
of the alloys were significantly different (P<.01) 
(Figure 2 (c), (d)). The thermoelectric power value 
of each alloy increased slightly with an increase in 
the temperature difference.  

dIscussIon
The results suggest that dental alloy sorting by 

thermoelectric method is feasible when the num-
ber of alloys being sorted is limited. At the same 
time, the results revealed certain limitations of 
this method. When the hot junction temperature 
was relatively low and the temperature difference 
was small, the difference in the thermoelectric 
power values of some alloys was not significant. 
Dental alloy sorting by this method may become 
difficult when the difference in the thermoelectric 
power values of the various alloys is very small or 
the dispersion of the measured values is large.  

R2 values close to 1 indicated that the linear 
regression fit of the experimental data was good. 
However, a slight increase in the thermoelectric 
power value was observed with increasing tem-
perature range. This result was due to the non-
linearity in the relationship between temperature 
and thermal EMF, which is a typical feature of 
thermocouples.4 The thermal EMF is a function of 
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Figure 1. Schematic diagram of apparatus used for measuring 
thermal EMF of dental alloys against constantan and cold junc-
tions (CJ1 and CJ2) at ambient temperature.  V1 is the thermal 
EMF of copper against constantan and is used to measure the 
hot-junction (HJ) temperature.  V2 is the thermal EMF of the 
specimen against constantan. 

Figure 2. Thermoelectric power values of dental alloys.  The error bar represents the standard deviation (n=9). Identical letters 
indicate that the values are not statistically different (P>.01). (a) 298–303 K (∆t = 5 K); (b) 298–308 K (∆t = 10 K); (c) 298–313 K (∆t 
= 15 K); (d) 298–318 K (∆t = 20 K).

Kikuchi   

temperature, and within the measured tempera-
ture range, the measured function was slightly 

convex and increased monotonically. Therefore, 
an appropriate temperature range should be se-
lected for the measurement of thermoelectric 
power.  

It is known that in an oral cavity, when two 
dissimilar alloys are in electrical contact, a gal-
vanic couple is produced, and a corrosive gal-
vanic current flows between the alloys.7 It may be 
worth mentioning that when two dissimilar alloys 
are electrically contacted and a thermocouple is 
formed, a weak thermoelectric current could also 
flow between the alloys; this thermoelectric cur-
rent will depend on the difference between the 
thermoelectric power of the two alloys and the 
thermal gradient in the oral cavity.  

To realize dental alloy sorting on the basis of 
thermoelectric power, two methods are evidently 
feasible. One is the determination of the ther-

(a) 298-303 K (∆t = 5 K)

(c) 298-313 K (∆t = 15 K)

(b) 298-308 K (∆t = 10 K)

(d) 298-318 K (∆t = 20 K)
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moelectric power of an unknown alloy against 
a standard alloy, as shown in the present study; 
then, this determined value can be matched with 
the closest value in a previously created table that 
lists the thermoelectric power values of dental 
alloys (direct instrumentation).  However, it may 
not be easy to carry out this method intraorally 
because it is not always easy to control both the 
hot- and cold-junction temperatures.  

The other method is the use of probes made 
of various known alloys to find a probe that gen-
erates zero thermal EMF, as shown in Figure 
3 (comparative instrumentation). Although the 
number of alloys for which this method can be 
used is limited by the number of probes available, 
this method is probably more robust against vari-
ations in environmental conditions because it is 
based on the principle that for two identical alloys, 
the thermal EMF is zero, irrespective of the junc-
tion temperatures, provided the two cold-junction 
temperatures are the same (law of homogeneous 
metals).4 A high hot-junction temperature implies 
a high output voltage and thus high reliability of 
the method. In practice, there is an upper limit on 
the temperature which can be applied intraorally. 
The hot-junction temperature can be increased 
by minimizing the hot-junction area and the heat-
ing time, while the bulk temperature of the tar-
get alloy remains unchanged. As for the two cold 
junctions, cold-temperature compensation can be 
provided automatically. In both the methods, ac-
ceptance limits should be adjusted by taking into 

consideration the deviation of the measured value 
from the standard one. Further study on the ther-
moelectric properties of a larger variety of dental 
alloys is required before the use of this method in 
clinical applications.  

concLusIons
In this study, the thermoelectric powers of six 

commercial dental-casting alloys were deter-
mined to verify the feasibility of dental alloy sort-
ing by thermoelectric method. Despite certain 
limitations of the present experiment, the follow-
ing conclusions are drawn:

• The thermoelectric method can be applied 
to the rapid sorting of specific dental alloys when 
a sufficiently large temperature difference is 
achieved.  

• The discrimination of any two alloys is more 
reliable when the difference between their ther-
moelectric power values is more.
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Figure 3. Schematic diagram of dental alloy sorter example.  
The hot junction (HJ) formed by an unknown alloy (Alloy X) and 
one of the probes made of known alloys (Alloys 1,2,3,...,n) is 
temporarily heated by the heater.  If the temperatures of the 
two cold junctions (CJ1 and CJ2) are the same and the two al-
loys are identical, the voltmeter will show zero thermal EMF, 
regardless of the hot-junction temperature. 




