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Hepatocellular carcinoma (HCC) remains the fifth most
commonly diagnosed cancer and second leading cause of
cancer deaths for males worldwide.1 Viral hepatitis remains
one of the major etiologies for HCC, particularly hepatitis B
virus (HBV) chronic infection, which has a high prevalence in
Asia and Africa coinciding with the high incidence of HCC in
these areas.2 Currently, chronic infection with hepatitis C
virus (HCV) is one of the main cause of HCC in the Western
world.1 Besides that, hepatitis D virus (HDV) co-infection
with chronic HBV has also received increased awareness and
has been shown to significantly increase the risk of HCC.3

Development of HCC in the background of chronic inflam-
mation, particularly that driven by chronic hepatitis virus
infection, has been reported to be a result from an immuno-
suppressive and exhausted tumor microenvironment (TME).
This makes viral-related HCC a potential candidate for im-
munotherapy, which aims to reactivate the exhausted local
antitumor immunity. However, many challenges remain for

this strategy. Recent reports on clinical outcome from the
immunotherapy trials, mostly involving checkpoint inhib-
itors (immune checkpoint blockades), have been modest.

Given the complexity and dynamic interaction between
the tumor cells and immune microenvironment, this review
aims to explore the current understanding on viral-related
HCCs, based on its unique tumor mutational landscape
versus immune microenvironment and its impact on the
development of novel immunotherapeutic strategies.

Understanding HCC Based on Viral Etiologies

As immunotherapy is based upon the basic principle of the
immune system recognizing and targeting the tumor cells as
foreign, understanding both the tumor antigenicity and the
immune microenvironment is essential for a successful
immune-based therapy. Are the tumor antigens immuno-
genic in HCC? Are they being presented and recognized? Is
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Abstract Hepatocellular carcinoma (HCC), is the most common type of liver cancer which is derived
mostly from the background of chronic inflammation. Chronic hepatitis viral infection
remains one of the most common etiologies implicated in chronic liver inflammation,
cirrhosis, andHCC.With such background inflammation, immunotherapy—particularly the
checkpoint inhibitors—have been tested in HCC patients with unprecedented success.
However, despite the initial enthusiasm, the response rate to immunotherapy remains
modest inmost clinical trials (approximately 20%), with mixed reports on response rates in
hepatitis viral-related HCC as compared with nonviral HCC. Given such complexity in
response to immunotherapy, it is increasingly appreciated that deeper understanding of
the tumormolecular features and tumormicroenvironment of hepatitis viral-relatedHCC is
crucial for the design ofmore effective immunotherapeutics.Wediscuss herein the current
knowledge in tumor genomic mutational and immune landscapes as well as the ongoing
immunotherapy trials in HCC with the unique focus on their viral etiologies. Based on this
understanding, we also outline perspectives and rationale on the design of potential
immunotherapeutic strategies in HCC patients according to their viral etiologies.
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there sufficient tumor infiltration of cytotoxic immune cells
and are they able to target and kill the tumor cells? Is the
immune microenvironment conducive for immunological
cytotoxicity against the tumor cells? Many of these areas
are essential and can be modulated to ensure a successful
immunotherapeutic strategy (►Fig. 1). As it is a complex
ecosystem, tailoring a successful immunotherapy is more
challenging than one would have thought. We would herein
discuss these aspects of immunotherapy, starting from tu-
mor mutational landscapes to immune microenvironment,
in the highly heterogeneous HCC particularly focusing on
viral etiologies.

Mutational Landscapes in Viral-Related HCCs

As mentioned, one of the key principles of immunotherapy
is the recognition of tumor antigens by the immune system
as foreign.4 In the case of viral-driven HCC, the recognition
of viral-related antigens or the antigens derived from the
viral-induced mutations could then serve as a basis for
immunotherapy.

Hepatitis B virus is a double-stranded DNA virus which
integrates with the host human genome while HCV is an
enveloped single-stranded RNA virus which does not show
DNA integration.5HBV viral proteins that could be expressed
during its replication cycle include hepatitis B surface anti-
gen (HBsAg), hepatitis B core antigen (HBcAg), and hepatitis
B X antigen (HBxAg).6 For instance, it was previously pro-
posed that HBV-encoded HBx protein plays multiple onco-
genic role associated to hepatocarcinogenesis.7 It was
however, long speculated that HBV-related proteins may
not be a good tumor antigen target due to the clearance of
hepatitis-related proteins observed in HBV-related HCC.8,9

However, recent studies have demonstrated that it is possi-
ble to target HBV-human chimeric proteins produced as a
result from HBV-human genome integration.10,11 In fact,
recent attempts to treat HBV-related HCC by targeting HBV
antigen resulted in promising benefit.12,13

On the other hand, HCV viral genomic RNA encodes for a
polyprotein, which is processed by host and viral proteases
into at least 10 different proteins.14 There is currently no
HCV vaccine available due to many challenges in vaccine
development including high variability of HCV virus and the
lack of suitable in vitro and in vivo models.15 Henceforth, an
HCV antigen targeting immunotherapy for HCV-related HCC
would most likely face similar challenges. Instead, HCV
infection was traditionally treated with interferon-based
therapy,16 until recent development of direct-acting antiviral
(DAA) agents with high efficacy and safety profile.17,18

However, HCV eradication was controversial,19 following a
series of reports on unexpected higher incidence or recur-
rence of HCC in DAA-treated HCV patients.20–22 Although it
was later concluded that patient selection may play a critical
role.23 There is also currently limited HDV-targeted therapy
available apart from general antiviral strategy. Therefore, the
most promising strategy of targeting viral-specific antigens
for the treatment of HCC will be on HBV-specific antigens.

It is also not known if any of the viral-drivenmutations lead
to expression of immunogenic antigens which could be tar-
geted by immunotherapy. For instance, several genes were
reported to be altereddue toHBV-DNA integration events such
as putative cancer-related TERT, MLL4, and CCNE1 genes.24 A
more recent comprehensive genomic atlas of HCC reported on
two major HBV integration sites with recurrent mutations:
MLL4 and TERT; while HCV-related HCC displayed higher
frequency of CDKN2A promoter silencing and TERT promoter
mutation.25 In addition, EGF was also implicated in HCV
cirrhosis and HCV-related HCC26,27 while immune-related
gene Interleukin-1β (IL-1β) was reported to be associated
with HCC in Japanese patients with chronic HCV infection.28

These studies delineate genetic alterations in hepatitis viral-
related HCC; however, there were no specific studies to deter-
minehowantigenic thesehepatitis viral-relatedmutations are.

Furthermore, it was reported and further validated that
HBV-induced tumorigenesis is in fact a result from the
immune-mediated liver damage29–31 or dysfunction of

Fig. 1 Elements of a successful immunotherapeutic strategies. Three key elements of successful immunotherapeutic strategies with enhanced
antitumor immunity include: (1) to enhance recognition of tumor antigens or the priming of immune system, i.e., using T-cell therapy; (2) to
stimulate cytotoxic immune cells infiltration or homing to the tumor mass such as using therapies enhancing T-cell chemoattractants; and (3) to
modulate the tumor microenvironment such as using check-point inhibitors to reverse the immune exhaustion in the tumor.
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cytotoxic immune cells, rather than as a result of these viral-
related oncogenes.32 Several genome-wide association stud-
ies have also linked multiple HBV-induced genes to immune
functionality such as HLA variants, MICA, CTLA4, and IL-6 in
the predisposition and prognosis of patients with HBV-
associated HCC.33–36 Likewise, HCV-induced inflammation
and eventual immune dysfunction both play a major role in
carcinogenesis of HCV-related HCC.37 A genome-wide asso-
ciation study in HCV-induced HCC identified a susceptibility
locus in the 5′ flanking region of MICA that was associated
with lower soluble MICA proteins levels and development of
HCC from chronic HCV infection.38 MICA38 binds to NKG2D
and results in the activation of NK cells and T cells.39 Its
downregulation in both HBV and HCV-related HCC would
indicate a mechanism of hepatitis viral-induced immuno-
suppression. It is therefore likely that the immunosuppres-
sive microenvironment of viral-related HCC would make a
better therapeutic target as opposed to the viral-specific
mutations or antigens.

Besides specific mutations, it was previously reported that
total mutational burden could be an indication of response to
the checkpoint blockade in multiple cancer types.40,41 The
total mutational burden of HCC is moderate, considerably
higher thanpancreaticor prostate cancerbut lower thanmajor
cancers like lung cancer andmelanoma, bothofwhich respond
better to the checkpoint inhibitor than HCC.42 In fact it was
reported that HBV-related HCC harbors lower total mean
mutation rate than that of non-HBV-related HCC whereas
there was no significant difference in the pattern of somatic
mutations in HBV-, HCV-, and non-HBV/non-HCV-related
HCC.43 Thismay indicate a lower response rate in HBV-related
HCC, which in fact was reported to be the case in Check-
Mate040 clinical trial using anti-PD-1 antibody nivolumab in
advanced HCC (►Table 1).44However, given theheterogenous
nature of HCC with multiple different molecular classifica-
tions45 as well as intratumoral heterogeneity,46 it remains
challenging to generalize on the response to immunotherapy
based on the current understanding of genomic landscape of
viral-related HCC. Indeed, deeper understanding in the tumor
immune microenvironment would be essential to gain better
insights in this complex mechanism.

Tumor Immune Microenvironment

The critical role of immune microenvironment in HCC
progression or disease prognosis was previously dis-
cussed.42,47–49 Most of the immunoprofiling of TME in
viral-related HCC was performed compared to healthy
livers or the non-HCC chronic viral-infected livers.50 For
instance, Treg accumulated in TME of HBV-related HCC, as
compared with nontumor and healthy liver controls, has
been shown to associate with impaired CD8þ T cells,
disease progression, and poor survival in HCC patients.51

In fact, the role of Treg in maintaining immune tolerance
during chronic HBV infection has been previously
shown52 and its accumulation was linked to HBV-induced
TGF-β-miR-34a-CCL22 signaling pathway.53 Dysfunctional
CD8þ T cells with upregulation of multiple exhaustion

markers such as PD-1, Tim-3 or Lag-3 were also previously
described in chronic HBV infection54 or HBV-related
HCC.55,56 It was reported that HCV-specific CD8þ T cells
express various inhibitory receptors, including CTLA-4 and
PD-1 with enhanced exhaustion phenotype that could be
reactivated by PD-1/PD-L1 blockade.57,58 Whereas, the
immunosuppressive function of Treg could be fine-tuned
by OX40 in HCV-infected liver tissues.59

Dysfunction of other lymphocytes such as the reduced
cytotoxicity of NK cells was also reported during chronic
hepatitis viral infection.60 It was previously speculated that
NK is more dysfunctional in chronic HBV as compared with
chronic HCV infection.61 However, MICA mutation, which is
important for T and NK cells activation,34,38 was detected in
both HBV and HCV-related HCC. In fact, NK cells impairment
was previously shown in both HBV/HCV-related HCC,62

renderingNK cell therapy an attractive option for viral-related
HCCs (►Fig. 2). As for myeloid subsets, the resident macro-
phages in liver, the kupffer cells, were known as one of the
important immune cells involved in multistep antiviral
immunity and disease pathogenesis during HBV and HCV
infection.63 It involves a cascade of events with IL-6 and
TNFa-driven chronic inflammation and compensatory prolif-
eration as well as oxidative stress which eventually drives the
process of carcinogenesis.64,65 Such viral-driven, chronic, and
unresolved inflammation is in fact a well-recognized mecha-
nism in HCC development and progression.66 In fact not only
the inflammatory functions of thesemacrophages, the tolero-
genic and suppressive M2 macrophages were also shown to
be important in tumor progression and invasiveness via
CCL22-mediated epithelial-mesenchymal transition.67 More
importantly, It was also shown thatmacrophages could impair
T-cells immunity via enhanced PD-L1 expression in HCC
tumors.68

A recent high dimensional immunoprofiling of TME with
cytometry by time-of-flight comparing HBV-related versus
nonviral hepatitis-related HCC demonstrated higher density
of intratumoral immunosuppressive Treg and TRM in HBV-
related HCC.69 This is consistent with previous studies that
have identified higher Treg and TRM numbers in chronic HBV
infection.70,71 The same study also reported relatively lower
proportions of CD244 expressing cytotoxic NK cells in HBV-
related HCC compared with nonviral-related HCC.69 Indeed,
reduced CD244 has been previously reported to associate
with NK cells dysfunction and immune tolerant in chronic
HBV infection.72 Most importantly, PD-1 expression was
enhanced in both Treg and TRM in HBV-related HCC, consis-
tent with a virus-induced immunosuppressive or exhausted
TME.69 In contrast, others however, described no significant
difference in PD-L1 and LAG-3 expression comparing unin-
fected (14/29 patients) versus virus-infected (HBV: 1/29 and
HCV: 14/29 patients, respectively) HCC.40 Given the low
number of HBV-HCC case in this study, it is hard to conclude
if PD-1/PD-L1 pathways were indeed affected. A bigger
cohort study will be needed to distil the differences in
immune landscapes of viral versus nonviral HCC.

Overall, chronic viral hepatitis induced a chronic but yet
dysfunctional, liver inflammation which eventually led to the
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development of HCC. The resulting immune exhaustion and
multiple layers of immune dysregulation provide unique op-
portunity for immunotherapeutic intervention. Despite this,
the complex immune landscapes and interaction between
different immune subsets hindered the success of one single
immunotherapeutic agent. This is indeed reflected in the
seemingly lower response rate of HBV-related HCC to check-
point blockade (►Table 1). Furthermore, given the complex
etiopathologies ofHCC including alcohol-inducedandnonalco-
holic fatty liver disease (NAFLD), most of which also induce a
chronic inflammation in the liver, it will hence remain chal-
lenging to clearly definethe immune landscapes ofHCCaccord-
ing to its etiologies.

Potential Novel Immunotherapies Based on
Viral Etiologies in HCC

With the success of phase II clinical trials using checkpoint
inhibitor anti-PD-1 in HCC (CheckMate040 and Key-
note224), there has been increasing interest and use of
immunotherapy in HCC.44,73 Despite the fact that phase III
Checkmate459 and Keynote240 did not reach predeter-
mined endpoints, the clinical benefits of immunotherapy
in HCC were well accepted in the field. Several immuno-
therapeutic strategies for HCC treatment, in particular the
combination checkpoint–inhibitor immunotherapy, are cur-
rently under various phases of ongoing clinical trials. Be-
sides that, several other immunotherapies such as adoptive
cell therapy and cancer vaccine are also in different phases
of development. We will discuss these immunotherapies in
the light of hepatitis-related HCC, based on the limited data
available.

Engineered T-Cell Therapy

T cell engineered to express chimeric antigen receptors
(CARs) or autologous T cells expanded and engineered ex
vivo with specific targeted tumor antigen(s) have been used
for the treatment of HCC. For instance, there are several
ongoing phase I or phase I/II trials using CAR-T cells directed
against GPC-3, CEA, or Mucin 1 in various solid tumors
including HCC.74 It was also shown that T cell could respond
to HLA-A2-restricted tumor antigens such as NY-ESO-1 and
SSX-2.75 T-cell therapy targeting HCC-specific antigen such
as α-fetoprotein (AFP) was explored previously without
much success (NCT03349255). Indeed, most of the tumor-
specific T cells had low affinities and expressed higher PD-1
T-cell exhaustionmarker.75 Thehighly heterogeneous nature
of HCC cells also suggests that immunotherapy targeting a
single tumor antigen would likely not be successful.

On the other hand, targeting HBV-related antigen in HBV-
related HCC is challenging as chronic HBV infection often
results in HBV proteins clearance8,9 and HBV-DNA integra-
tion or insertion into host genome leads to defective or small
fragments of HBV antigens expression.76,77 HBV-specific
T-cell responses were rarely detected in HCC patients75

and HBV therapeutic vaccine composed of HBsAg with a
proprietary adjuvant showed little success in clearing chron-
ic HBV infection.78 This, however, could be controversial and
it was demonstrated that HBVcan actually be treatedwith ex
vivo expanded autologous T cells genetically modified to
express HBsAg-specific T-cell receptor.12 Even though it was
demonstrated in just one casewith end-stagemetastaticHCC
that expressed HBsAg who also received transplanted non-
HBV liver, the team has confirmed its feasibility, safety as

Fig. 2 Immunotherapy in hepatocellular carcinoma (HCC) with perspectives on viral hepatitis-related HCC. General immunotherapies tested in
viral- and nonviral-related HCCs include immune checkpoint-inhibitors, oncolytic virus, cancer vaccines, and adoptive cell therapy with various
success. The previously reported microenvironments of viral-related and nonviral-related HCC were summarized based on enriched immune-
subsets. Suggested immunotherapies were listed below based on the current knowledge on their respective microenvironments even though
more data are required in some of these areas (marked with a question mark).
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well as significant reduction in HBsAg levels.12 In fact, most
of the HBV-DNA integration is incomplete and the insertion
of viral DNA into thehumangenome results in the expression
of HBV-human chimeric proteins.10,11 A recent study by Tan
et al demonstrated a proof of principle that T-cell therapy
could be tailored to target antigens from integrated HBV as a
personalized TCR T-cell immunotherapy for HBV-related
HCC.13 In this study, it was shown that HBV-related HCC
tumor cells expressed antigenic epitopes translated from the
short integrated HBV mRNAs, that could be detected by and
resulting in T-cell activation.13 Autologous T cells were
engineered to express the selected TCRs specific for epitopes
of HBV-DNA from metastases and were adoptively trans-
ferred to two HCC patients with recurrence after liver
transplantation. This personalized T-cell therapy is proven
to be safe in both patients with one patient showing reduc-
tion in volume of metastases during the treatment.13

For chronic HCV infection, a CAR-T against HCV targeting
the HCV/E2 glycoprotein was previously constructed to
control HCV infection and it was capable of secreting antivi-
ral and pro-inflammatory cytokines and lysing HCV-infected
hepatocytes in vitro.79However, there is currently no clinical
trial with such HCV-targeting CAR-T therapy and the efficacy
in a clinical setting for HCV-related HCC remains to be tested.
Therefore, there is a stronger current evidence support T-cell
therapy in HBV-related HCC but not in HCV-related or
nonviral-related HCC (►Fig. 2).

Other Adoptive Cell Therapies

Other forms of adoptive cell therapies (ACT) have been
explored as immunotherapies for HCC and most of these
therapies are not targeted or specific to any particular tumor
antigens in HCC. For instance, treatment in 150 HCC patients
with adoptive immunotherapy using autologous TILs, ex-
panded and activated with IL-2 in vitro, demonstrated
improved recurrence-free survival (RFS) after resection.80

However, the technical challenge of isolating TILs as well as
lack of specificity of the whole population of TILs without
selection may limit the success of such approach.

Alternatively, cytokine-induced killer (CIK) cells, a hetero-
geneous cytotoxic immune population including CD8þ T
cells, NK cells, and CD3þCD56þ NKT cells, were also tested
on HCC patients. CIK cells are expanded from autologous
peripheral blood mononuclear cells stimulated with a cock-
tail of cytokines inclusive of IL-1, IL-2, IFNγ, and anti-CD3
antibody. It was first demonstrated to be safe with lower
recurrence rate and improved RFS in 76 treated versus 74
control HCC patients.80 Subsequently two other randomized
phase III trials using CIK therapy have been shown to provide
longer median time to recurrence81 or improved RFS and
overall survival (OS).82

Another ACTusing NK cells has also been explored as HCC
immunotherapy, based on the rationale that NK cells are
dysfunctional in HCC and tumor-infiltration with activated
NK cells is associated with superior HCC patient surviv-
al.47,60,83 There is only one complete feasibility and safety
study using adoptiveNK cells extracted from cadaveric donor

liver perfusate for liver transplant recipients with HCC,
which demonstrated reduced recurrence rate.84 Several
other NK cell therapy trials in HCC are currently ongoing
(clinicaltrials.gov). The latest development of engineered NK
cells or CAR-NK cells providing tumor specificity has prom-
ising future for NK cell therapy for cancers including HCC.85

Given the lower density of NK cells in HBV-related HCC
compared with NBNC-HCC69 and the impairment of NK cells
in viral-related HCC,62 it remains to be determined if adop-
tive NK therapy could actually enhance the clinical outcome
in both HBV- and HCV-related HCCs (►Fig. 2). Last but not
least, NK cell activating strategies such as using IL-12, IL-15,
or type I interferons, would be worth exploring in nonviral-
related HCC, given they were reported to be relatively more
functional and abundant compared with the viral-HCC62,69

(►Fig. 2).

Oncolytic Virus Therapy

As an important organ receiving blood and nutrients from the
guts and the center of detoxification, liver is known as an
immune-tolerogenic organ.86 It is highly tolerogenic toward
gut-derived bacterial metabolites entering the liver via the
portal vein87 but was previously shown to illicit a robust
antiviral immune response.88 For instance, it was shown
that HCC progression could be controlled with the TLR3
activation, a viral-related innate immune response.83 Onco-
lytic virus therapywhichshowselective infectionandkillingof
tumors cells has also been explored.89 These viruses can also
be engineered to express genes like GM-CSF, an immune-
stimulatory cytokine which could enhance antitumor immu-
nity by stimulating antigen-presenting cells such as dendritic
cells and promoting infiltration and maturation of immune
cells like NK cells and T cells.90 Oncolytic virus therapies were
tested in preclinical trials and a few of them were tested on
phase I or II clinical trials for HCC.91 One of them showed that
the useof JX-594, anengineeredVacciniaviruswith thymidine
kinase-deactivated, was well tolerated92 and demonstrated
promising outcome associated with high viral dose in phase II
clinical trial on HCC patients.93 A randomized phase III trial
comparing JX-594 followed by sorafenib versus sorafenib in
patients with advanced HCC (PHOCUS) (NCT02562755)
started in late 2015 but was recently recommended to stop
after the interim futility analysis, which predicted that the
study is unlikely to meet its primary objective of overall
survival by the time of the final analysis. This decision was
not related to the safety of the investigational product as the
therapy was generally well tolerated by the patients. Despite
that, other than direct killing and immunomodulating prop-
erties, oncolytic virus could also induce tumor cell death
(“immunogenic cell death”) and the release of tumor antigen
which further enhances the antitumor immunity. However,
given the immunosuppressive microenvironment of HCC, it is
most likely that the success of oncolytic virus could be en-
hanced in combination with immune checkpoint blockades.
Indeed, several clinical trials using the combination of onco-
lytic virus and immune checkpoint inhibitors are ongoing,
including in advanced HCC.94
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There is currently no information on whether oncolytic
virus would work better or worse in viral-related HCC.
However, oncolytic virus JX-594 has been shown to have
an effect on suppression of hepatitis B viral genomes.95

Cancer Vaccine

Cancer vaccines, either in the form of peptide, dendritic cell-
pulsed with synthetic peptide, or RNA vectors, have been
used in therapeutic setting based on the principle that
immune system could recognize these cancer antigens as
foreign. Cancer vaccine development in HCC has been chal-
lenging and met with limited success.96 This is perhaps
mostly due to the highly immunosuppressive microenviron-
ment and highly heterogeneous HCC hampering the possi-
bility of a single targeted cancer antigen. Several target
cancer antigens for HCC include tumor-associated antigens
such as NY-ESO1, glypican-3, and AFP. For instance, first HCC
vaccine clinical trial against AFP showed limited clinical
benefits despite detectable T-cell response.97,98 Phase I
cancer vaccine studies targeting GPC-3 have proven safe
and achieved posttherapeutic immunogenicity; however,
clinical endpoint of relapse prevention after curative treat-
ments (surgery or radiofrequency ablation)was not achieved
in phase II studies with GPC-3.99,100

The failure of single targeted cancer vaccine could be due
to the heterogeneous nature of HCC. In fact, cancer vaccines
based on personalized neoantigens have demonstrated
promising outcome in Melanoma patients.101,102 Currently,
there is one ongoing therapeutic cancer vaccine single-arm
clinical trial using therapeutic cancer vaccine IMA970A, a
multipeptide-based HCC vaccine composed of 16 newly
discovered and overexpressed tumor-associated peptides
(TUMAPs) directly identified from resected HCC tissues
(clinical trial: NCT03203005). It remains to be determined
if suchmultipeptide cancer vaccines in HCCwill be a success.
However, given the immunosuppressive microenvironment
of HCC, it is likely that combination with other immunother-
apy will be necessary to achieve superior outcome.

Cancer vaccine based on viral antigen was designed for
cancer prevention rather than therapeutic. Previous attempt
to treat chronic HBV infection using HBV vaccine has failed78

and the benefit of HCV eradication in HCC was controver-
sial.20–22 The benefit of targeting viral antigen in viral-
related HCC is therefore uncertain. On the other hand, it
was also not known if any other viral-induced mutational
antigens are antigenic enough for HCC tumor killing as
discussed above. Therefore, cancer vaccines specific to
viral-related HCC are currently not under active develop-
ment. Instead, personalized cancer vaccines based on neo-
antigens prediction, which was tested in melanoma,101,103

could hold promising future for the treatment of HCC.

Immune Checkpoint Blockade

Upon the FDA approval of nivolumab and pembrolizumab
as second-line treatment for advanced HCC, there has been
an active development of immune checkpoint blockades

(ICBs) in HCC.44,73 A list of the major trials involving ICBs
with viral etiologies analyses is summarized in ►Table 1.

Anti-PD-1 Monoclonal Antibodies
Immune checkpoints are pathways that inhibit the immune
response to maintain self-tolerance and regulate the dura-
tion and amplitude of immune responses. Immune check-
point molecules like PD-1 or PD-L1 expression are
upregulated in many cancers, exploited by tumor cells to
escape immune surveillance during the cancer development.
In fact, it has been previously demonstrated that higher
PD-1/PD-L1 is associated with poorer progression-free and
overall survival after resection of primary HCC.104 Higher
PD-1 expression on the CD8þ T cells is also associated with
tumor progression and poor prognosis.48,105 Furthermore,
attempts of using anti-PD-1 as antiviral therapy for chronic
HBV infection have been described to partially restore HBV-
specific CD8þ T cell functions.106,107 Based on this rationale,
blocking PD-1/PD-L1 has since become a well-received
immunotherapeutic option in HCC.

Two previously completed key phase I/II clinical studies in
HCC using anti-PD-1 monoclonal antibodies, nivolumab, and
pembrolizumab are CheckMate040 and Keynote224, respec-
tively.44,73 CheckMate040, a phase I/II, open-label, noncompar-
ative, dose escalation and expansion trials using nivolumab for
the treatment of HCC patients previously treated with sorafe-
nib, yieldedanobjective response rate (ORR) of 20% anddisease
control rate of 64%.44 Interestingly, it was reported that the
ORR of HBV-positive cases was lower (14%) compared with
HCV-positive (20%) and nonviral-related cases (21–23%)
(►Table 1).44AsubsequentAsiancohort analysisdemonstrated
an ORR of 15% with less difference across viral etiologies
(►Table 1: HBV-related ORR: 12–13% vs. HCV-related ORR:
14–20% or nonviral-related ORR: 13–21%).108 The third arm of
analysis fromCheckMate 040 using nivolumaband ipilimumab
combination therapy hasfirst been announced in Asco 2019109

and the analysis according to viral etiologieswill be available in
the near future. On the other hand, the open label phase II
Keynote224 trial that assessed the efficacy and safety of pem-
brolizumab in patients with advanced HCC previously treated
with sorafenib had demonstrated an ORR of 17% and disease
control rate of 62%.73 Analysis based on hepatitis viral-related
HCC: both HBV- (21% of the total cohort) and HCV- (25% of the
total cohort) relatedcasesagaindemonstrateda lower response
rate in viral-related cases (ORR of 13%) versus the uninfected
cases (ORR of 20%)73 (►Table 1). 15 or 25% of the patients
experienced greater than grade 3 treatment-related adverse
events suchas rash, pruritus, and increase in liver enzymessuch
as aspartate aminotransferase increase and alanine amino-
transferase (ALT) fromtheKeynote224andCheckMate040trial,
respectively.44,73 The rate of adverse events was as high as 37%
in nivolumab and ipilimumab combination therapy.109 It is
however, not known if HCC patients with viral hepatitis may
experience more adverse events.

The complete reports from two phase III trials involving
nivolumab (CheckMate459, NCT02576509) and pembrolizu-
mab (Keynote240, NCT02702401) are still pending despite
announcement on the failure to meet predetermined end
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points of OS. As announced by Bristol-Myers Squibb, Check-
Mate459 evaluating nivolumab versus sorafenib as a first-line
treatment in patients with unresectable HCC did not meet its
prespecified primary endpoint of OS (hazard ratio [HR]¼0.85
[95% CI: 0.72–1.02]; p¼0.0752, ►Table 1) despite showing a
clear trend toward improved OS by nivolumab comparedwith
sorafenib, a current standard of care. The ORR according to
mRECIST was reported to be around 20% similar to the
outcome from CheckMate040. Keynote240, on the other
hand, is a phase III, randomized, double-blind trial evaluating
pembrolizumab compared with placebo in patients with
advanced HCC who were previously treated with systemic
therapy. According to announcement in ASCO 2019, this trial
too did not meet the predetermined primary end points of
improved OS (HR: 0.78; one-sided p¼0.0238) and PFS (HR:
0.78; one-sided p¼0.0209).110 The ORR was however 16.9%
for pembrolizumab versus 2.2% for placebo.110 The analysis
based on viral-etiologies from these two phase III trials is not
known at the moment, even though one would not suspect
much difference compared with the results from the earlier
completed phase I/II trials.

The lack of significant difference or even the inferior
response rate in HBV-related versus nonviral or HCV-related
HCCmay be explained by several studies of TME in HCC. Our
previous study comparing the TME of HBV-related versus
nonviral-related HCC showed higher expression of PD-1 in
HBV-related HCC.69 As PD-1 expression on CD8þ T cells was
reported to be predictive of PD-1 blockade response in
nonsmall cell lungs cancer,111 one would expect a better
response rate in patients with HBV-related HCC. Indeed,
tumor-specific T cells were detectable in HCC patients but
exist in exhausted state which could potentially be rein-
vigorated with checkpoint inhibitor.75,112 However, it is also
important to note that the TME of HBV-HCC is enriched
with Treg,69 which was previously reported to exhibit
immunosuppressive phenotypes leading to disease progres-
sion and in some cases even promote hyperprogression of
cancer upon PD-1/PD-L1 blockade.113,114 It therefore
remains to be confirmed if a combination therapy targeting
both PD-1 and Treg115 simultaneously would enhance the
clinical response in HBV-related HCC particularly (►Fig. 2).
Also, given the complex TME of HCC, it would also be
interesting to see the possibility of further stratification
of viral-related HCC to several more distinctive TMEs or
molecular subgroups for better design of future immuno-
therapeutic strategies.

Anti-PD-L1 Monoclonal Antibodies
There are several anti-PD-L1 monoclonal antibodies: avelu-
mab, durvalumab, and atezolizumab currently on clinical
trials in advanced HCC. One phase II study of avelumab
(NCT03389126) as monotherapy and another phase I study
with combination of avelumab and axitinib, a smallmolecule
tyrosine kinase inhibitor (NCT03289533), were registered
and both are pending patients’ recruitment. There were
more trials involving the use of durvalumab, particularly a
phase I/II trial in solid tumors including 39 HCC patients
demonstrated a 10% ORR with better response in HCV-

related cases (25%) compared with HBV-related (0%) and
noninfected (9.5%) HCC116 (►Table 1). This outcome is
interesting and may be consistent with previous study
stating a role of PD-L1 in HCV-induced immunosuppressive
TME57,58 and hence supports the use of anti-PD-L1 in HCV-
related HCC (►Fig. 2). Despite that, it was also previously
demonstrated that expression level of PD-L1 shows no
difference between viral etiologies: HBV, HCV versus nonvi-
ral etiology in HCC.117 Another phase I/II study using the
combination of durvalumab and tremelimumab (anti-CTLA4
antibody) in patients with unresectable HCC (NCT02519348)
is currently ongoing and the result based on only 40 patients
showed a modest 15% ORR with none of the patients with
HBV or HCV-infected HCC responded118 (►Table 1). It is not
known why durvalumab alone showed better response rate
in HCV-related HCC but durvalumab and tremelimumab
combination therapy shows only response in noninfected
HCC patients. Furthermore, the results from the above two
trials involved very small cohort of patients and hencemight
be too immature to conclude the final verdict. We await with
anticipation of the randomized, multicenter phase III study
of durvalumab and tremelimumab as first-line treatment in
patients with unresectable HCC: HIMALAYA study
(NCT03298451)119 (►Table 1). The result from this large
scale trial with estimated enrolment of 1,310 patients will be
announced in the near future. The analysis based on the
etiology of HCC (HBV vs. HCV vs. others) will be performed
and it will be interesting to observe if there is any interesting
difference between them.

Other two large-scale anti-PD-L1 combination phase III
studies in advanced HCC include the COSMIC-312 trial with
atezolizumab (Anti-PD-L1)þ cabozantinib (multitargeted
tyrosine kinase inhibitor) and the IMbrave150 trial with
atezolizumabþbevacizumab (VEGF [vascular endothelial
growth factor] inhibitor; ►Table 1). Cabozantinib is ap-
proved as a second-line treatment in previously treated
patients with advanced HCC based on improved overall
survival versus placebo in the phase III CELESTIAL trial.120

COSMIC-312 (NCT03755791) is a multicenter, randomized,
open-label, controlled phase III trial combining cabozanti-
nib with atezolizumab for patients with advanced HCC who
have not yet received systemic therapy.121 IMbrave150
(NCT03434379), on the other hand, is a phase III, open-
label, multicenter, randomized study to evaluate the com-
bination of atezolizumab and bevacizumab versus sorafenib
in patients with locally advanced or metastatic and/or
unresectable HCC.122 It is known that VEGF plays an anti-
angiogenesis role which has modulatory properties on both
tumor cells and the immune microenvironment.123 For
instance, VEGF plays a role in Treg recruitment to the tumor
and hence would be a good strategy to inhibit the pathway
to enhance the local antitumor immunity.124 The IMBRAVE
trial is currently ongoing with anticipation of promising
outcome. In fact, with the increasing appreciation of im-
mune-modulatory properties of targeted therapies, future
combination of immunotherapy and targeted therapy based
on strong rationale and well-studied mechanism of actions
might be an upcoming trend.
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Anti-CTLA-4 Monoclonal Antibodies
Anti-CTLA4 antibody (ipilimumab) was first approved by
FDA in 2011 for the treatment of melanoma following the
phase III trial showing significant better overall survival
compared with gp100 vaccine alone.125 Following that,
ipilimumab as monotherapy was compared with nivolumab
monotherapy or combination therapy with nivolumab in a
phase III trial in advanced melanoma patients and demon-
strated superior outcome in terms of both progression-free
survival andmedian survival in combination therapy.126 This
lays a foundation for combination therapy using nivolumab
plus ipilimumab in HCC. The nivolumab and ipilimumab
combination therapy on 148 advanced HCC patients in the
third arm of analysis from CheckMate 040 was further
divided to three arms with different doses and regimens.
For Arm A, 50 patients were given 1mg/kg nivolumab and
3mg/kg ipilimumab every 3 weeks (Q3W) for four cycles,
followed by 240mg nivolumab every 2 weeks (Q2W); Arm B,
49 patients were given 3mg/kg nivolumab and 1mg/kg
ipilimumab Q3W for four cycles, followed by 240mg nivo-
lumab Q2W; or Arm C, 49 patients were given 3mg/kg
nivolumab Q2W and 1mg/kg ipilimumab every 6 weeks
(Q6W). The initial result showing 31 to 32% ORR with
acceptable safety profile was first announced in Asco
2019109 and the analysis based on viral etiologies to this
promising combination regimen will be known in the near
future.

Another anti-CTLA4 antibody, tremelimumab, was previ-
ously reported in a clinical trial assessing the safety profile
and antitumor as well as antiviral activity in HCV-related
HCC patients (NCT01008358)127 (►Table 1). An ORR of 17.6%
based on 17 patients was reported with enhanced tumor
response as well as anti-HCV viral immunity detected.127 As
mentioned above, tremelimumab was also combined with
durvalumab in another two more trials (NCT02519348 and
NCT03298451).118,119 Given the potential benefit in anti-
HCV viral activity, the role of anti-CTLA4 ICB in HCV-related
HCC warrants future validation (►Fig. 2).

Future Perspectives and Concluding
Remarks

Chronic viral hepatitis infection remains one of the most
common etiologies of HCC128 which will hopefully decrease
with more effective control of infection in the future. In the
meantime, the incidence of nonviral-related HCC particular-
ly that from NAFLD is on the raise.129,130 Therefore, future
immunotherapeutics will have to take into considerations
and require deeper understanding of TME from these
cases.131 In fact, our recent study implicated the role of
Tim-3 in nonviral-related HCC.69 Despite the potential role
of Tim-3 in T-cell dysfunction and disease progression in
HCC,55 there is by far only one trial in advanced primary liver
cancer using TSR-022 (Anti-TIM-3 Antibody) in combination
with TSR-042 (Anti-PD-1 Antibody) (NCT03680508) and its
outcome will only be revealed in the future. With the
increasing use andmultiple combination strategies of immu-
notherapies as well as enhanced understanding the mecha-

nisms of actions with advancement in immunomonitoring
technologies, the future of treating of HCC according to
various etiologies might be a possible aim to achieve.
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