A Preliminary Investigation for Standardization of Hydroalcoholic Extract of Mucuna pruriens (Kapikaccu): An Important Drug Used to Treat Parkinson’s Disease in Ayurveda

Gangadhara Swamy¹ Rajendra Holla² Suresh R. Rao¹

¹Department of Anatomy, Subbaiah Institute of Medical Sciences and Research Centre, Shivamogga, Karnataka, India
²Department of Pharmacology, K. S. Hegde Medical Academy, Mangalore, Karnataka, India

Address for correspondence Suresh R. Rao, PhD, Department of Anatomy, Subbaiah Institute of Medical Sciences and Research Centre, Shivamogga, Karnataka 577222, India (e-mail: s4chavan@yahoo.co.in).

Abstract

Establishment of standardization for the Ayurvedic formulations is most important for its chemical compounds, biological action, and its quality reassurance in production and manufacturing of traditional herbal medicines. As most of the drugs are standardized, drug companies are using substitute drugs instead of true drugs. So, to make finest superiority drugs it is necessary to validate raw drugs. Observing the existing trend in mind, hydroalcoholic extract of Mucuna pruriens seeds (HAMP) was subjected to standardize the procedures for phytochemical tests. The separation of bioactive substances from HAMP was performed using both manual methods and high-profile thin layer chromatography. From the current study, it is revealed that the seed contains alkaloids, steroids, carbohydrates, tannins, flavonoids, and coumarins, which gave the medicine numerous therapeutic properties.

Keywords

► hydroalcoholic extract of Mucuna pruriens
► phytochemical analysis
► HPTLC

Introduction

As per the World Health Organization (WHO), approximately 80 to 85% of the world’s population use herbal medicines for their health care.¹,² As the usage of herbal medicines has increased, issues regarding their quality, safety, and efficacy have risen up.³ WHO has even evolved guidelines for the validation of plant-based drugs.⁴ As standardization is a burning topic in Ayurvedic drug formulations, it is most important for the establishment of its biological activity, chemical profile, and quality assurance in production and manufacturing of herbal drugs. As Ayurvedic medicines are supervised by the Drugs and Cosmetics Act, there is increased awareness for quality assurance to the public and the necessity for developing the standards for the purpose of quality control by the manufacturers as well as by the drug control authorities.⁵

Mucuna pruriens (MP) commonly called velvet bean is a tropical legume indigenous tree in Africa and tropical Asia. As it is one of the best sources of protein content in many African countries, it is used as food for humans and also as animal feed.⁶ It is used as a forage, fallow, green manure crop enriched with proteins, amino acids, glutathione, lecithin, gallic acid, β-sitosterol, and L-3,4-dihydroxyphenylalanine (L-DOPA), vitamins such as niacin, ascorbic acid, synthesizing dopamine linked with mood and sex.⁷ The fatty acids present are palmitic, oleic, stearic, behenic, linoleic, and linolenic acid. It possesses antioxidant, hypoglycemic, lipid-lowering, and neuroprotective activities.⁸ MP seedpods are covered with hair which are rich in 5-hydroxytryptamine and if they come in touch with the skin it causes severe itching.⁹,¹⁰ In Ayurveda, to treat Parkinson's disease (PD) (also called Kampavata), MP has been used for a long time. Many kinds of research have found the presence of L-DOPA in the seeds of MP. Various clinical trials have been performed on PD patients for its safety, bioavailability, and action.¹¹,¹² It is reported that MP has antiurolithiatic,¹³ antidiabetic,¹⁴-¹⁶ anticancer, and antioxidant properties.¹⁷ As the plant has
numerous therapeutic properties and uses in the field of medicine, one should be aware of its photochemistry. So to prepare the best quality MP drug, it is necessary to authenticate raw drugs. Keeping the current trend in mind, it was subjected to standardize the procedures. For the current study, genuinity indicating parameters for MP were derived.

Materials and Methods

Plant Material
The seeds of MP were collected from the Sri Dharmastala Ayurveda Medical College and Research Center, Udupi, Karnataka, India. The plant material was stored in ambient conditions for further study.

Preparation of Extracts
The MP seeds were dried in the shade and powdered in our research laboratory with the help of pulverizer. The hydroalcoholic extract of *Mucuna pruriens* (HAMP) was prepared by soaking 500 g of powdered seeds of the MP in 2 L of 50% ethanol and 50% cold distilled water for 24 hours, filtered, and concentrated by evaporating on water bath till free from water. The extract is stored in an airtight container under normal temperature.

Preliminary Phytochemical Tests

Tests for Alkaloids

a. **Dragendorff’s test**: A few milligrams of HAMP extract were dissolved in alcohol and few drops of acetic acid and Dragendorff’s reagent were added, and then shaken well. An orange-red precipitate formed indicates the presence of alkaloids.

b. **Wagner’s test**: A few milligrams of extract were dissolved in acetic acid and a few drops of Wagner’s reagent were added. A reddish-brown precipitate formed indicates the presence of alkaloids.

c. **Mayer’s test**: A few milligrams of HAMP extract were dissolved in acetic acid and few drops of Mayer’s reagent were added. A dull white precipitate will be formed if the alkaloids are present.

d. **Hager’s test**: A few milligrams of extract were dissolved in acetic acid and 3 mL of Hager’s reagent was added. Formation of a yellow precipitate indicates the presence of alkaloids.

Tests for Carbohydrates

a. **Molisch test**: To the HAMP, along the sides of the test tube, 1 mL of α-naphthol solution and concentrated sulfuric acids were added. If carbohydrates are present then a violet color will be formed at the junction of the two liquids.

b. **Fehling’s test**: Few milligrams of HAMP were mixed with equal quantities of Fehling’s solution A and B. The mixture was warmed in a water bath. If carbohydrates are present then the formation of a brick-red precipitate is seen.

c. **Benedict’s test**: To 5 mL of Benedict’s reagent, a few milligrams of the extract were added, and boiled for 2 minutes and cooled. Formation of a red precipitate indicates the presence of carbohydrates.

Test for Steroids

a. **Libermann–Burchard test**: To the extract dissolved in chloroform, 1 mL of acetic acid and 1 mL of acetic anhydride were added, then heated on a water bath and cooled. Few drops of concentrated sulfuric acid were added along the sides of the test tube. The appearance of a bluish green color indicates the presence of steroids.

b. **Salkowski test**: The HAMP was dissolved in chloroform and equal volume of concentrated sulfuric acid was added. Formation of bluish red to a cherry red color in chloroform layer and green fluorescence in the acid layer indicates the presence of steroids.

Test for Saponins
To a few milligrams of HAMP, sodium bicarbonate (NaHCO₃) was added and shaken. Stable froth formation indicates the presence of saponin.

Test for Tannins
To the HAMP, a few drops of dilute solution of ferric chloride (FeCl₃) were added. Formation of dark blue color shows the presence of tannins.

Test for Flavonoids

Shinoda’s test: To HAMP in alcohol, a few magnesium turnings and few drops of concentrated hydrochloric acid were added and heated on a water bath. Formation of red to pink color indicates the presence of flavonoids.

Test for Phenol
To HAMP in alcohol, add two drops of alcoholic ferric chloride. Formation of blue to blue-black indicates the presence of phenol.

Test for Coumarins
To the HAMP in alcohol, a few drops of 2 N sodium hydroxide (NaOH) solutions were added. Dark yellow color formation indicates the presence of coumarins.

Test for Triterpenoids
The HAMP was warmed with tiny bits and a few drops of vinyl chloride. Formation of pink color indicates the presence of triterpenoids.

Test for Carboxylic Acid
HAMP dissolved in water is treated with sodium bicarbonate. Brisk effervescence indicates the presence of carboxylic acid.
Test for Resin
Few milligrams of the sample were mixed with water and acetone. Turbidity indicates the presence of resin.37

Test for Quinine
Few milligrams of HAMP were treated with 0.5% of NaOH. If quinine is present it gives deep coloration like pink, purple, or red.35

High-Profile Thin Layer Chromatography
One gram of powdered sample was dissolved in 10 mL ethanol and kept for cold percolation for 24 hours and filtered. 4, 8, and 12 µL of the above sample were applied to a precoated silica gel F254 on aluminum plates to a bandwidth of 7 mm using Linomat 5 TLC applicator. The plate was developed in n-butanol:acetic acid:water (4:1:1). The developed plates were visualized in short ultraviolet (UV) and long UV, and then derivatized with vanillin sulfuric acid reagent and scanned under 254 and 366 nm and white light at 620 nm. Retention factor (Rf), the color of the spots, and densitometric scan were recorded.38

Results and Discussion
Qualitative and quantitative analysis of phytochemical compounds present in HAMP by colorimetry (Tables 1 and 2), photo documentation (Fig. 1), the unique Rf values (Table 3), densitometric scan, and densitogram (Figs. 2–4) were obtained at different wavelengths from HPTLC.

Concentration of different phytochemicals of HAMP detected by HPTLC at wavelength 366 nm are alkaloids (17.13%), carbohydrates (17.19%), steroids (19.59%), tannins (25.86%), flavonoids (10.81%), and Coumarins (9.42%).

The phytochemical tests were performed to serve as a preliminary test for the standardization of the HAMP formulation. Tests for alkaloids, carbohydrates, steroids, tannins, flavonoids, and coumarins are positive for HAMP. Photo Table 1

<table>
<thead>
<tr>
<th>Test</th>
<th>HAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloid</td>
<td>+</td>
</tr>
<tr>
<td>Steroid</td>
<td>+</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>+</td>
</tr>
<tr>
<td>Tannin</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>−</td>
</tr>
<tr>
<td>Terpenoid</td>
<td>−</td>
</tr>
<tr>
<td>Coumarins</td>
<td>+</td>
</tr>
<tr>
<td>Phenol</td>
<td>−</td>
</tr>
<tr>
<td>Carboxylic acid</td>
<td>−</td>
</tr>
<tr>
<td>Resins</td>
<td>−</td>
</tr>
<tr>
<td>Quinine</td>
<td>−</td>
</tr>
<tr>
<td>Amino acids</td>
<td>−</td>
</tr>
</tbody>
</table>

Abbreviation: HAMP, hydroalcoholic extract of Mucuna pruriens seeds.

Table 2

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Tests</th>
<th>Color if positive</th>
<th>HAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alkaloids</td>
<td>Orange precipitate</td>
<td>Red solution</td>
</tr>
<tr>
<td>2</td>
<td>Steroids</td>
<td>Bluish green</td>
<td>Green color is appeared in the chloroform and colorless in the acid layer</td>
</tr>
<tr>
<td>3</td>
<td>Carbohydrate</td>
<td>Violet ring</td>
<td>Violet ring</td>
</tr>
<tr>
<td>4</td>
<td>Tannin</td>
<td>Red precipitate</td>
<td>Bluish green solution</td>
</tr>
<tr>
<td>5</td>
<td>Flavonoids</td>
<td>Red to pink</td>
<td>Light pink</td>
</tr>
<tr>
<td>6</td>
<td>Saponins</td>
<td>Stable froth</td>
<td>No froth</td>
</tr>
<tr>
<td>7</td>
<td>Triterpenoids</td>
<td>Red</td>
<td>Gray color</td>
</tr>
<tr>
<td>8</td>
<td>Coumarins</td>
<td>With 2 N NaOH</td>
<td>Yellow color</td>
</tr>
<tr>
<td>9</td>
<td>Phenols</td>
<td>With alcoholic ferric chloride</td>
<td>Blue to blue, brown</td>
</tr>
<tr>
<td>10</td>
<td>Carboxylic acid</td>
<td>With water and NaHCO₃</td>
<td>Brisk effervescence</td>
</tr>
<tr>
<td>11</td>
<td>Resin</td>
<td>With aqueous acetone</td>
<td>Turbidity</td>
</tr>
<tr>
<td>12</td>
<td>Quinine</td>
<td>5% NaOH</td>
<td>Pink/purple/red</td>
</tr>
<tr>
<td>13</td>
<td>Amino acids</td>
<td>Ninhydrine reagent</td>
<td>Purple color</td>
</tr>
</tbody>
</table>

Abbreviation: HAMP, hydroalcoholic extract of Mucuna pruriens seeds.
A Preliminary Investigation for Standardization of Hydroalcoholic Extract of Mucuna pruriens Swamy et al.

Fig. 1 High-profile thin layer chromatography (HPTLC) photo documentation of ethanolic extract of hydroalcoholic extract of Mucuna pruriens seeds (HAMP).

Table 3 R_f values of samples

<table>
<thead>
<tr>
<th>Short UV</th>
<th>Long UV</th>
<th>After derivatization</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–</td>
<td>0.17 (D purple)</td>
</tr>
<tr>
<td>0.36 (D green)</td>
<td>0.36 (F Aq. blue)</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>0.39 (D purple)</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>0.47 (L purple)</td>
</tr>
<tr>
<td>0.52 (D green)</td>
<td>0.52 (FD blue)</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>0.59 (D purple)</td>
</tr>
<tr>
<td>0.61 (D green)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>0.72 (D purple)</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>0.84 (D purple)</td>
</tr>
</tbody>
</table>

Abbreviations: D, dark; F, fluorescent; L, light; UV, ultraviolet.

Fig. 2 Densitometric scan at 254 nm.

Fig. 3 Densitometric scan at 366 nm.

documentation, the unique R_f values, densitometric scan, and densitogram obtained at different wavelengths from HPTLC can be used as a fingerprint to identify HAMP powder. Similar findings about the presence of the compounds in the MP has been reported by several authors. Several reports on MP about anti-venom, hypoglycemic, anti-Parkinson's, antimicrobial, antioxidant, and aphrodisiac activity has been documented. Our present phytochemical analysis of HAMP also confirms similar types of compounds found in other studies. Thus, it can be used for further various clinical trials.

Conclusion

By preserving the fundamental aspect of the Ayurvedic drug, standardization requires a rational approach. The main
obstacle in the standardization of the Ayurvedic drug is the identification of its biological source. Drugs from different geographical source may vary with its active constituent and it may not be feasible to standardize drug chemically. The parameters used in this work ensure the quality control of HAMP. The results found through this study were rapid, reproducible, and could be used for routine monitoring of HAMP. HAMP is endowed with various biological properties and hence efforts have been made here to provide scientific data on the same.

Conflict of Interest
None declared.

Acknowledgments
The authors sincerely would like to thank Sri Dharmastala Ayurveda Medical College and Research Center, Udupi, Karnataka, India, for providing plant material for this study; the Management of Subbaiah Institute of Medical Sciences and Research Center, Shivamogga; and the Management of K. S. Hegde Medical Academy, Deralakatte, Mangalore.

References

Fig. 4 Densitometric scan after derivatization at 620 nm.
A Preliminary Investigation for Standardization of Hydroalcoholic Extract of *Mucuna pruriens*
Swamy et al.

20 The Ayurvedic Pharmacopeia of India, Government of India, Ministry of Health and Family Welfare, Department of Ayurveda, Yoga and Homoeopathy (Ayush), New Delhi, Part-1; edition; 2001 1(5):1

21 Indian Pharmacopoeia, Ministry of Health and Family Welfare, Government of India, New Delhi; 2010 Vol I:10–146

24 Wagner H, Pharmazeutische Biologie. 5th ed. AUFI. 15 BN 1931;92:345–353

26 Foulger JH. The user of the Molisch (α-naphthol) reactions in the study of sugars in biological fluids. (PDF) J Biol Chem 1931;92:345–353

30 Levine VE, Richman E. A test for cholesterol based upon the use of sulpuric acid containing selenious acid. Exp Biol Med 1930;27(8):832–833

37 Shafi R, Vasantha Kumari B, Chitarasu T. Qualitative phytochemical and FTIR analysis of root extracts of Canthium parviflorum Lam. JCHPS 2014;2:122–127

41 Fung SY, Tan NH, Sim SM, Marinello E, Guerranti R, Aguijji JC. Mucuna pruriens Linn. seed extract pretreatment protects against cardiorespiratory and neuromuscular depressant effects of Naja sputatrix (Javan spitting cobra) venom in rats. Indian J Exp Biol 2011;49(4):254–259

