Semin Reprod Med 2019; 37(03): 131-140
DOI: 10.1055/s-0039-3400251
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Arcuate Kisspeptin Neurons Coordinate Reproductive Activities with Metabolism

Oline K. Rønnekleiv
1   Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
2   Division of Neuroscience, National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
,
Jian Qiu
1   Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
,
Martin J. Kelly
1   Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
2   Division of Neuroscience, National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
› Author Affiliations
Further Information

Publication History

Publication Date:
23 December 2019 (online)

Abstract

Hypothalamic control of fertility is the quintessential homeostatic function. However, fertility is metabolically demanding; so, there must be coordination between energy states and reproductive functions. Because gonadotropin-releasing hormone (GnRH) neurons are devoid of many of the critical metabolic hormone receptors for sensing nutrient levels, it has long been recognized that the sensing of energy stores had to be done by neurons presynaptic to GnRH neurons. Some of the obvious players have been the anorexigenic proopiomelanocortin (POMC) and orexigenic neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons, both of which are in close apposition to the median eminence, a circumventricular organ. Indeed, POMC and NPY/AgRP neurons are inversely regulated by glucose and metabolic hormones including insulin and leptin. However, their synaptic connections with GnRH neurons are sparse and/or GnRH neurons are lacking the postsynaptic receptors to mediate the appropriate physiological response. Kisspeptin neurons were discovered in the early part of this century and subsequently shown to project to and control GnRH neuronal excitability. In fact, more recently the arcuate kisspeptin neurons have been identified as the command neurons driving pulsatile release of GnRH. Subsequently, it was shown that arcuate kisspeptin neurons express not only steroid hormone receptors but also metabolic hormone receptors such that similar to POMC neurons, they are excited by insulin and leptin. Therefore, based on the premise that arcuate kisspeptin neurons are the key neurons coordinating energy states with reproduction, we will review not only how these vital neurons control pulsatile GnRH release but how they control energy homeostasis through their synaptic connections with POMC and NPY/AgRP neurons and ultimately how E2 can regulate their excitability.

Disclosure statement

The authors have nothing to disclose.


 
  • References

  • 1 Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA. Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci 2006; 26 (25) 6687-6694
  • 2 Estrada KM, Clay CM, Pompolo S, Smith JT, Clarke IJ. Elevated KiSS-1 expression in the arcuate nucleus prior to the cyclic preovulatory gonadotrophin-releasing hormone/lutenising hormone surge in the ewe suggests a stimulatory role for kisspeptin in oestrogen-positive feedback. J Neuroendocrinol 2006; 18 (10) 806-809
  • 3 Smith JT. Kisspeptin signalling in the brain: steroid regulation in the rodent and ewe. Brain Res Brain Res Rev 2008; 57 (02) 288-298
  • 4 Ramaswamy S, Guerriero KA, Gibbs RB, Plant TM. Structural interactions between kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (Macaca mulatta) as revealed by double immunofluorescence and confocal microscopy. Endocrinology 2008; 149 (09) 4387-4395
  • 5 Lehman MN, Hileman SM, Goodman RL. Neuroanatomy of the kisspeptin signaling system in mammals: comparative and developmental aspects. Adv Exp Med Biol 2013; 784: 27-62
  • 6 Clarkson J, d'Anglemont de Tassigny X, Moreno AS, Colledge WH, Herbison AE. Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge. J Neurosci 2008; 28 (35) 8691-8697
  • 7 Zhang C, Tonsfeldt KJ, Qiu J. , et al. Molecular mechanisms that drive estradiol-dependent burst firing of Kiss1 neurons in the rostral periventricular preoptic area. Am J Physiol Endocrinol Metab 2013; 305 (11) E1384-E1397
  • 8 Zhang C, Bosch MA, Qiu J, Rønnekleiv OK, Kelly MJ. 17β-Estradiol increases persistent Na(+) current and excitability of AVPV/PeN Kiss1 neurons in female mice. Mol Endocrinol 2015; 29 (04) 518-527
  • 9 Wang L, DeFazio RA, Moenter SM. Excitability and burst generation of AVPV kisspeptin neurons are regulated by the estrous cycle via multiple conductances modulated by estradiol action. eNeuro 2016; 3 (03) DOI: 10.1523/ENEURO.0094-16.2016.
  • 10 Qiu J, Rivera HM, Bosch MA. , et al. Estrogenic-dependent glutamatergic neurotransmission from kisspeptin neurons governs feeding circuits in females. eLife 2018; 7: e35656
  • 11 Cravo RM, Margatho LO, Osborne-Lawrence S. , et al. Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience 2011; 173: 37-56
  • 12 Nestor CC, Qiu J, Padilla SL. , et al. Optogenetic stimulation of arcuate nucleus Kiss1 neurons reveals a steroid-dependent glutamatergic input to POMC and AgRP neurons in male mice. Mol Endocrinol 2016; 30 (06) 630-644
  • 13 Gottsch ML, Navarro VM, Zhao Z. , et al. Regulation of Kiss1 and dynorphin gene expression in the murine brain by classical and nonclassical estrogen receptor pathways. J Neurosci 2009; 29 (29) 9390-9395
  • 14 Belchetz PE, Plant TM, Nakai Y, Keogh EJ, Knobil E. Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science 1978; 202 (4368): 631-633
  • 15 Knobil E. The neuroendocrine control of the menstrual cycle. Recent Prog Horm Res 1980; 36: 53-88
  • 16 Wilson RC, Kesner JS, Kaufman J-M, Uemura T, Akema T, Knobil E. Central electrophysiologic correlates of pulsatile luteinizing hormone secretion in the rhesus monkey. Neuroendocrinology 1984; 39 (03) 256-260
  • 17 Levine JE. New concepts of the neuroendocrine regulation of gonadotropin surges in rats. Biol Reprod 1997; 56 (02) 293-302
  • 18 Clarke IJ. Two decades of measuring GnRH secretion. Reprod Suppl 2002; 59: 1-13
  • 19 Moenter SM, DeFazio AR, Pitts GR, Nunemaker CS. Mechanisms underlying episodic gonadotropin-releasing hormone secretion. Front Neuroendocrinol 2003; 24 (02) 79-93
  • 20 Seminara SB, Messager S, Chatzidaki EE. , et al. The GPR54 gene as a regulator of puberty. N Engl J Med 2003; 349 (17) 1614-1627
  • 21 de Roux N, Genin E, Carel J-C, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 2003; 100 (19) 10972-10976
  • 22 Zhang C, Roepke TA, Kelly MJ, Rønnekleiv OK. Kisspeptin depolarizes gonadotropin-releasing hormone neurons through activation of TRPC-like cationic channels. J Neurosci 2008; 28 (17) 4423-4434
  • 23 Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK, Steiner RA. Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci 2009; 29 (38) 11859-11866
  • 24 Wakabayashi Y, Nakada T, Murata K. , et al. Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. J Neurosci 2010; 30 (08) 3124-3132
  • 25 Goodman RL, Hileman SM, Nestor CC. , et al. Kisspeptin, neurokinin B, and dynorphin act in the arcuate nucleus to control activity of the GnRH pulse generator in ewes. Endocrinology 2013; 154 (11) 4259-4269
  • 26 Han SY, McLennan T, Czieselsky K, Herbison AE. Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion. Proc Natl Acad Sci U S A 2015; 112 (42) 13109-13114
  • 27 Clarkson J, Han SY, Piet R. , et al. Definition of the hypothalamic GnRH pulse generator in mice. Proc Natl Acad Sci U S A 2017; 114 (47) E10216-E10223
  • 28 Qiu J, Nestor CC, Zhang C. , et al. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons. eLife 2016; 5: e16246
  • 29 Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol 2006; 18 (04) 298-303
  • 30 Backholer K, Smith JT, Rao A. , et al. Kisspeptin cells in the ewe brain respond to leptin and communicate with neuropeptide Y and proopiomelanocortin cells. Endocrinology 2010; 151 (05) 2233-2243
  • 31 Qiu J, Fang Y, Bosch MA, Rønnekleiv OK, Kelly MJ. Guinea pig kisspeptin neurons are depolarized by leptin via activation of TRPC channels. Endocrinology 2011; 152 (04) 1503-1514
  • 32 Qiu J, Zhang C, Borgquist A. , et al. Insulin excites anorexigenic proopiomelanocortin neurons via activation of canonical transient receptor potential channels. Cell Metab 2014; 19 (04) 682-693
  • 33 Padilla SL, Qiu J, Nestor CC. , et al. AgRP to Kiss1 neuron signaling links nutritional state and fertility. Proc Natl Acad Sci U S A 2017; 114 (09) 2413-2418
  • 34 Silverman AJ, Krey LC, Zimmerman EA. A comparative study of the luteinizing hormone releasing hormone (LHRH) neuronal networks in mammals. Biol Reprod 1979; 20 (01) 98-110
  • 35 Silverman AJ, Jhamandas J, Renaud LP. Localization of luteinizing hormone-releasing hormone (LHRH) neurons that project to the median eminence. J Neurosci 1987; 7 (08) 2312-2319
  • 36 Levine JE, Ramirez VD. Luteinizing hormone-releasing hormone release during the rat estrous cycle and after ovariectomy, as estimated with push-pull cannulae. Endocrinology 1982; 111 (05) 1439-1448
  • 37 Levine JE, Norman RL, Gliessman PM, Oyama TT, Bangsberg DR, Spies HG. In vivo gonadotropin-releasing hormone release and serum luteinizing hormone measurements in ovariectomized, estrogen-treated rhesus macaques. Endocrinology 1985; 117 (02) 711-721
  • 38 Clarke IJ, Cummins JT. Increased gonadotropin-releasing hormone pulse frequency associated with estrogen-induced luteinizing hormone surges in ovariectomized ewes. Endocrinology 1985; 116 (06) 2376-2383
  • 39 Liu X, Lee K, Herbison AE. Kisspeptin excites gonadotropin-releasing hormone neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology 2008; 149 (09) 4605-4614
  • 40 Zhang C, Bosch MA, Rønnekleiv OK, Kelly MJ. Kisspeptin activation of TRPC4 channels in female GnRH neurons requires PIP2 depletion and cSrc kinase activation. Endocrinology 2013; 154 (08) 2772-2783
  • 41 Liu X, Porteous R, d'Anglemont de Tassigny X. , et al. Frequency-dependent recruitment of fast amino acid and slow neuropeptide neurotransmitter release controls gonadotropin-releasing hormone neuron excitability. J Neurosci 2011; 31 (07) 2421-2430
  • 42 Jan YN, Jan LY, Kuffler SW. A peptide as a possible transmitter in sympathetic ganglia of the frog. Proc Natl Acad Sci U S A 1979; 76 (03) 1501-1505
  • 43 Arrigoni E, Saper CB. What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation. Curr Opin Neurobiol 2014; 29: 165-171
  • 44 Roseweir AK, Kauffman AS, Smith JT. , et al. Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J Neurosci 2009; 29 (12) 3920-3929
  • 45 Kotani M, Detheux M, Vandenbogaerde A. , et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001; 276 (37) 34631-34636
  • 46 Pielecka-Fortuna J, Chu Z, Moenter SM. Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol. Endocrinology 2008; 149 (04) 1979-1986
  • 47 Liu X, Herbison AE. Small-conductance calcium-activated potassium channels control excitability and firing dynamics in gonadotropin-releasing hormone (GnRH) neurons. Endocrinology 2008; 149 (07) 3598-3604
  • 48 Lee K, Duan W, Sneyd J, Herbison AE. Two slow calcium-activated afterhyperpolarization currents control burst firing dynamics in gonadotropin-releasing hormone neurons. J Neurosci 2010; 30 (18) 6214-6224
  • 49 Zhang C, Rønnekleiv OK, Kelly MJ. Kisspeptin inhibits a slow afterhyperpolarization current via protein kinase C and reduces spike frequency adaptation in GnRH neurons. Am J Physiol Endocrinol Metab 2013; 304 (11) E1237-E1244
  • 50 Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014; 94 (01) 265-301
  • 51 Navarro VM, Bosch MA, León S. , et al. The integrated hypothalamic tachykinin-kisspeptin system as a central coordinator for reproduction. Endocrinology 2015; 156 (02) 627-637
  • 52 Navarro VM, Gottsch ML, Wu M. , et al. Regulation of NKB pathways and their roles in the control of Kiss1 neurons in the arcuate nucleus of the male mouse. Endocrinology 2011; 152 (11) 4265-4275
  • 53 Kelly MJ, Qiu J, Rønnekleiv OK. TRPCing around the hypothalamus. Front Neuroendocrinol 2018; 51: 116-124
  • 54 Plant TM, Ramaswamy S, Dipietro MJ. Repetitive activation of hypothalamic G protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (Macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges. Endocrinology 2006; 147 (02) 1007-1013
  • 55 Campos P, Herbison AE. Optogenetic activation of GnRH neurons reveals minimal requirements for pulsatile luteinizing hormone secretion. Proc Natl Acad Sci U S A 2014; 111 (51) 18387-18392
  • 56 De Bond JA, Smith JT. Kisspeptin and energy balance in reproduction. Reproduction 2014; 147 (03) R53-R63
  • 57 Manfredi-Lozano M, Roa J, Tena-Sempere M. Connecting metabolism and gonadal function: novel central neuropeptide pathways involved in the metabolic control of puberty and fertility. Front Neuroendocrinol 2018; 48: 37-49
  • 58 Tolson KP, Garcia C, Yen S. , et al. Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity. J Clin Invest 2014; 124 (07) 3075-3079
  • 59 Yang JA, Yasrebi A, Snyder M, Roepke TA. The interaction of fasting, caloric restriction, and diet-induced obesity with 17β-estradiol on the expression of KNDy neuropeptides and their receptors in the female mouse. Mol Cell Endocrinol 2016; 437: 35-50
  • 60 Chan JL, Mantzoros CS. Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet 2005; 366 (9479): 74-85
  • 61 Cowley MA, Smart JL, Rubinstein M. , et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001; 411 (6836): 480-484
  • 62 Qiu J, Fang Y, Rønnekleiv OK, Kelly MJ. Leptin excites proopiomelanocortin neurons via activation of TRPC channels. J Neurosci 2010; 30 (04) 1560-1565
  • 63 Louis GW, Greenwald-Yarnell M, Phillips R, Coolen LM, Lehman MN, Myers Jr MG. Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis. Endocrinology 2011; 152 (06) 2302-2310
  • 64 Quennell JH, Mulligan AC, Tups A. , et al. Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology 2009; 150 (06) 2805-2812
  • 65 Ross RA, Leon S, Madara JC. , et al. PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse. eLife 2018; 7: e35960
  • 66 Hill JW, Williams KW, Ye C. , et al. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest 2008; 118 (05) 1796-1805
  • 67 Piper ML, Unger EK, Myers Jr MG, Xu AW. Specific physiological roles for signal transducer and activator of transcription 3 in leptin receptor-expressing neurons. Mol Endocrinol 2008; 22 (03) 751-759
  • 68 Topaloglu AK, Reimann F, Guclu M. , et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for neurokinin B in the central control of reproduction. Nat Genet 2009; 41 (03) 354-358
  • 69 Plum L, Belgardt BF, Brüning JC. Central insulin action in energy and glucose homeostasis. J Clin Invest 2006; 116 (07) 1761-1766
  • 70 Fujikawa T, Berglund ED, Patel VR. , et al. Leptin engages a hypothalamic neurocircuitry to permit survival in the absence of insulin. Cell Metab 2013; 18 (03) 431-444
  • 71 Clegg DJ, Brown LM, Zigman JM. , et al. Estradiol-dependent decrease in the orexigenic potency of ghrelin in female rats. Diabetes 2007; 56 (04) 1051-1058
  • 72 Frazao R, Dungan Lemko HM, da Silva RP. , et al. Estradiol modulates Kiss1 neuronal response to ghrelin. Am J Physiol Endocrinol Metab 2014; 306 (06) E606-E614
  • 73 Andrews ZB. Central mechanisms involved in the orexigenic actions of ghrelin. Peptides 2011; 32 (11) 2248-2255
  • 74 d'Anglemont de Tassigny X, Fagg LA, Dixon JPC. , et al. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci U S A 2007; 104 (25) 10714-10719
  • 75 Fu LY, van den Pol AN. Kisspeptin directly excites anorexigenic proopiomelanocortin neurons but inhibits orexigenic neuropeptide Y cells by an indirect synaptic mechanism. J Neurosci 2010; 30 (30) 10205-10219
  • 76 Stincic TL, Grachev P, Bosch MB, Rønnekleiv OK, Kelly MJ. Estradiol drives the anorexigenic activity of proopiomelanocortin neurons in female mice. eNeuro 2018 5(04): Doi: 10.1523/ENEURO.0103-18.2018
  • 77 Bonini JA, Jones KA, Adham N. , et al. Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J Biol Chem 2000; 275 (50) 39324-39331
  • 78 Castellano JM, Navarro VM, Fernández-Fernández R. , et al. Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology 2005; 146 (09) 3917-3925
  • 79 Fernández-Fernández R, Martini AC, Navarro VM. , et al. Novel signals for the integration of energy balance and reproduction. Mol Cell Endocrinol 2006; 254–255: 127-132
  • 80 Xu J, Kirigiti MA, Cowley MA, Grove KL, Smith MS. Suppression of basal spontaneous gonadotropin-releasing hormone neuronal activity during lactation: role of inhibitory effects of neuropeptide Y. Endocrinology 2009; 150 (01) 333-340
  • 81 Broberger C, Johansen J, Johansson C, Schalling M, Hökfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci U S A 1998; 95 (25) 15043-15048
  • 82 Liu T, Kong D, Shah BP. , et al. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron 2012; 73 (03) 511-522
  • 83 Moss RL, Kelly M, Riskind P. Tuberoinfundibular neurons: dopaminergic and norepinephrinergic sensitivity. Brain Res 1975; 89 (02) 265-277
  • 84 Lüscher C, Slesinger PA. Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci 2010; 11 (05) 301-315
  • 85 Tozzi A, Bengtson CP, Longone P. , et al. Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur J Neurosci 2003; 18 (08) 2133-2145
  • 86 Roepke TA, Qiu J, Smith AW, Rønnekleiv OK, Kelly MJ. Fasting and 17β-estradiol differentially modulate the M-current in neuropeptide Y neurons. J Neurosci 2011; 31 (33) 11825-11835
  • 87 Smith AW, Bosch MA, Wagner EJ, Rønnekleiv OK, Kelly MJ. The membrane estrogen receptor ligand STX rapidly enhances GABAergic signaling in NPY/AgRP neurons: role in mediating the anorexigenic effects of 17β-estradiol. Am J Physiol Endocrinol Metab 2013; 305 (05) E632-E640
  • 88 Padilla SL, Perez JG, Ben-Hamo M. , et al. Kisspeptin neurons in the arcuate nucleus of the hypothalamus orchestrate circadian rhythms and metabolism. Curr Biol 2019; 29 (04) 592-604.e4
  • 89 Hayward MD, Schaich-Borg A, Pintar JE, Low MJ. Differential involvement of endogenous opioids in sucrose consumption and food reinforcement. Pharmacol Biochem Behav 2006; 85 (03) 601-611
  • 90 Lippert RN, Ellacott KL, Cone RD. Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice. Endocrinology 2014; 155 (05) 1718-1727
  • 91 Betley JN, Cao ZF, Ritola KD, Sternson SM. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 2013; 155 (06) 1337-1350
  • 92 Pandit R, Luijendijk MC, Vanderschuren LJ, la Fleur SE, Adan RA. Limbic substrates of the effects of neuropeptide Y on intake of and motivation for palatable food. Obesity (Silver Spring) 2014; 22 (05) 1216-1219
  • 93 Pandit R, van der Zwaal EM, Luijendijk MC. , et al. Central melanocortins regulate the motivation for sucrose reward. PLoS One 2015; 10 (03) e0121768
  • 94 Stuber GD, Wise RA. Lateral hypothalamic circuits for feeding and reward. Nat Neurosci 2016; 19 (02) 198-205
  • 95 Rubinstein M, Low MJ. Molecular and functional genetics of the proopiomelanocortin gene, food intake regulation and obesity. FEBS Lett 2017; 591 (17) 2593-2606
  • 96 Wang L, Burger LL, Greenwald-Yarnell ML, Myers Jr MG, Moenter SM. Glutamatergic transmission to hypothalamic kisspeptin neurons is differentially regulated by estradiol through estrogen receptor α in adult female mice. J Neurosci 2018; 38 (05) 1061-1072