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Importance of Body Composition

Introduction
Body composition analysis refers to the quantitative and
qualitative measurement and characterization of differing
tissue types that make up the human body. Differences in
body composition exist betweenmen andwomen, and it has
a critical influence in multiple health conditions.1–3 As such,
scientific interest in body composition is growing along with
an increasing need for techniques to assess bodycomposition
accurately.

Adipose Tissue
Body composition studies have traditionally focused on
the quantity of adipose tissue in the body. Adipose tissue is
loose connective tissue composed of adipocytes that serve the
primary function of energy storage in addition to providing
cushion and insulation for the body. Growing evidence has
demonstrated the critical role of adipose tissue in endocrino-
logic signaling and its role in various pathologic conditions.
With the obesity epidemic, there is urgent need to better

understand the physiologic impacts of adipose tissue
and noninvasive methods for reliable quantification and
characterization.

Women on average possess a higher body fat percentage
compared with men of the same body mass index (BMI), but
they tend to accumulate greater proportions of adipose
tissue in the gluteal-femoral region. In contrast, men tend
to accumulate adipose tissue in the abdominal region.4 It has
been well established that distribution of body fat has a
greater impact on cardiometabolic risk than total body fat
content, with abdominal fat conveying greater risk.

As such, abdominal adipose tissue has been extensively
investigated in body composition studies. Adipose tissue is
traditionally divided into two main compartments: subcuta-
neous adipose tissue (SAT) and visceral adipose tissue (VAT).
VAT, the intra-abdominal adipose tissue that surrounds the
visceral organs, has been linked to a variety of adverse health
outcomes. Increased VATwas shown to be linked tometabolic
derangements including impaired glucose and lipid metabo-
lism,2,3,5 contributing to cardiometabolic risk and all-cause
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Abstract Body composition entails the measurement of muscle and fat mass in the body and has
been shown to impact clinical outcomes in various aspects of human health. As a result,
the need is growing for reliable and efficient noninvasive tools to measure body
composition. Traditional methods of estimating body composition, anthropomorphic
measurements, dual-energy X-ray absorptiometry, and bioelectrical impedance, are
limited in their application. Cross-sectional imaging remains the reference standard for
body composition analysis and is accomplished through segmentation of computed
tomography and magnetic resonance imaging studies. However, manual segmenta-
tion of images by an expert reader is labor intensive and time consuming, limiting its
implementation in large-scale studies and in routine clinical practice. In this review,
novel methods to automate the process of body composition measurement are
discussed including the application of artificial intelligence and deep learning to tissue
segmentation.

Issue Theme Musculoskeletal
Applications of Artificial Intelligence;
Guest Editors, Soterios Gyftopolous, MD,
MSc and Naveen Subhas, MD, MPH

Copyright © 2020 by Thieme Medical
Publishers, Inc., 333 Seventh Avenue,
New York, NY 10001, USA.
Tel: +1(212) 760-0888.

DOI https://doi.org/
10.1055/s-0039-3400267.
ISSN 1089-7860.

30

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

mailto:mtorriani@mgh.harvard.edu
https://doi.org/10.1055/s-0039-3400267
https://doi.org/10.1055/s-0039-3400267


mortality.3,6,7 It was also shown to be associated with
decreased bone mineral density,8,9 nonalcoholic fatty liver
disease,10,11 and increased risk of malignancies.12–14

Muscle
More recently, body composition studies have increasingly
emphasized the importance of muscle mass. Sarcopenia is a
condition characterized by progressive and generalized loss of
skeletal muscle mass and function that has important health
implications.15 Although consensus definitions have charac-
terized sarcopenia as both diminished total muscle mass and
decreased muscle function, reduced muscle mass on imaging
studies remains an important focus of sarcopenia. There is
increasing evidence in the literature linking sarcopenia to
undesirable patient outcomes. For example, sarcopenia was
associated with increased post–liver transplant mortality,16

morbidity and mortality following colorectal surgery,17 soft
tissue sarcoma recurrence,18 and increasedmortality in hepa-
tocellular carcinoma patients.19 Sarcopenia was also linked to
increased mortality and decreased ventilator-free days in
intensive care unit patients.20,21

Miscellaneous
Althoughvisceral adiposity and sarcopenia attract thegreatest
attention, other specialized body composition measurements
have been examined including other ectopic foci of fat accu-
mulation that are beyond the scope of this article. These
include intermuscular adipose tissue (IMAT),22 neck,23

tongue,24 and brown adipose tissue,25 and the accumulation
of lipids within skeletal muscle cells that affect insulin signal-
ing and predispose to insulin resistance.26

Tools for Body Composition Measurements

Traditional Methods
Because of the clinical and prognostic implications of body
composition, quick and reliable measurements are needed.
Historically, many tools provided noninvasive estimates of
body composition. These techniques include anthropomorphic
measurements such as BMI, waist-to-hip ratio, and waist
circumference. Although these measurements are inexpensive,
quick, and easy to perform and may serve as noninvasive
surrogates for fat mass, they are limited in accuracy. Other
techniques that have been proposed include bioelectrical
impedance analysis and dual-energy X-ray absorptiometry
that have been validated as noninvasive techniques to estimate
the total fat content in the body. However, these techniques
are unable to distinguish between VAT and SAT and are there-
forelimited inprovidingdetailed informationoncritical adipose
compartments.27

Manual Image Segmentation
The accepted reference standard for body composition mea-
surement involves segmentation of cross-sectional computed
tomography (CT) andmagnetic resonance imaging (MRI) byan
expert reader.28However,manual segmentation of images is a
time-consuming task. In our experience, a single axial CT slice
at the level of L4 can take up to 25minutes for accurate

segmentation into five tissues (SAT, VAT, muscle, bone, and
other tissues). Therefore, it is difficult to implement manual
segmentation in large-scale epidemiologic studies and as part
of clinical reporting. As a result, several tools have been
developed to facilitate or automate the process of image
segmentation.

Image Thresholding and Region Growing
The oldest and best established semiautomated method of
image segmentation involves pixel thresholding, with or with-
out theadditionof regiongrowing. Insimplepixel thresholding,
a lower and upper limit of pixel values are set by the user; all
pixels in the image that fall within the preset range are then
selected and are applicable to both CT and MRI studies. For
segmentation of medical images, however, pixel thresholding
alone has limited value. Furthermore, in the case of body
compositionmeasurements, pixel thresholding has no capabil-
ity todistinguishVAT fromSAT. As a result, pixel thresholding is
usually combined with a region growing algorithm to improve
segmentation performance by adding anatomical specificity
and compartmentalizing segmented areas. Region growing is a
category of image segmentation techniques that uses selected
seed points to grow a region of pixels by iteratively examining
neighboring pixels todetermine if thepixels should beadded to
the region based on predefined criteria.29

Pixel thresholding with region growing is the primary
approach for semiautomated image segmentation used in
software packages such as Slice-o-matic (Tomovision, Mon-
treal, Canada), National Institutes of Health (NIH) ImageJ
(NIH, Bethesda, MD), Osirix (Pixmeo, Geneva, Switzerland),
and Horos (Horos Project, Horosproject.org). These techni-
ques are frequently used in the literature and remain the
reference standard against which other techniques are
benchmarked30–32 (►Fig. 1). However, segmentations gen-
erated by these software packages requiremanual inspection
and editing by an expert reader.

Fuzzy c-means Clustering
An alternative method to pixel thresholding for image seg-
mentation involves the use of fuzzy c-means clustering
(FCM), a method of unsupervised data classification that
can identify different tissues in an image without the use of
an explicit threshold value. Due to field homogeneities,
pixel values in MR images do not fall within well-defined
pixel ranges as they do in the case of CT images. As such, pixel
thresholding techniques are less robust in segmenting MRI.
FCM-based algorithms, combined with histogram thresh-
olding, have provided robust segmentation of fat pixels on
MRI images of the abdomen and thigh in an unsupervised
and automated fashion when compared with manual tech-
niques.33–35 Briefly, the FCM algorithm implements fuzzy
logic in an iterative fashion to assignmembership of pixels to
a specified number of classes. The fuzzy membership func-
tion, which takes a value of 0 to 1, reflects the level of
similarity between the image pixel of interest and the
prototypical data or centroid of its class.33,34

In the context of body composition analysis, FCM algo-
rithms have been used to coarsely segment a MR image into
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fat tissue, nonfat tissue, and background (►Fig. 2). These FCM
algorithms are then generally combined with a method of
anatomical localization to distinguish VAT from SAT.36 The
most common method to achieve this is through the detec-
tion of the muscle layer between subcutaneous and visceral
fat through the use of curve deformation methods, often
referred to as “snakes.”33,34,37 After the muscle boundaries
are determined, histogram thresholding is then used to

calculate the total pixels of VAT within the bounds of the
abdominal wall.35

Multi-atlas Segmentation
Multi-atlas segmentation is a more recent method of image
segmentation that has been developed and implemented for
thepurposeofbodycomposition analysis. Inbrief, atlas-guided
segmentation algorithms are a form of supervised learning
algorithms that use manually pre-segmented atlases to assign
segmentation labels toan image. In suchanalgorithm,animage
is spatially registered to the prelabeled atlas through a series of
computationally expensive deformation steps until the two
images are similar. The resulting mapping between the coor-
dinates of the two images is then used to propagate the
segmentation labels from the atlas to the new image.38

However, due to the anatomical variation that exists
between individuals and slight differences in patient posi-
tioning during imaging, there are substantial limitations to
accuratemapping of an image if only a single atlas imagewas
available. As such, a more elegant approach using a library of
atlases has been developed to capture the variation that
exists and is referred to as multi-atlas segmentation (MAS).
In MAS, the novel image is registered with each atlas within
the library in a pairwise fashion, and the results are used to
label the image through a “majority voting” system where
the most frequently chosen label is used.

MAS techniques have been proven effective in the field of
body composition analysis. Examples in the literature include
MAS-based techniques to segment muscle, VAT, and SAT on
full-body three-dimensional data sets from attenuation
correction CTs of positron emission tomography/computed
tomography examinations39 as well as techniques to segment
VAT and SAT on full-body MRI.40 Additional implementations
of MAS also include multiorgan segmentation on abdominal
CTs andmuscle segmentation onwhole-bodyMRI41 (►Fig. 3).

MAS techniques are robust and have a distinct advantage
of requiring a relatively small amount of a priori data to

Fig. 2 (a) T1-weightedaxial imageofbilateral thighswithmembershipmaps fromfuzzyclustering segmentation. (b) Backgroundandbone, (c)muscle, and
(d) fat maps are shown, with brighter pixels indicating higher membership values. Subsequent processing steps using “snakes” (not shown) to identify
boundaries ofmuscle and boneare required to separate subcutaneous adipose tissue from intermuscular adipose tissue.Meanprocessing timeper slicewas
52� 7 seconds (Intel PC, 3.2 GHz, 2 GB RAM, Windows 2000 OS). (Reprinted with permission from Positano et al.33)

Fig. 1 (a) Noncontrast computed tomography axial images obtained
at the level of L4. (b) Typical manual segmentation of tissue com-
partments for body composition analysis using thresholding and
region growing: subcutaneous (green) and visceral (red) adipose
tissue, muscle (blue), bone (yellow), and other tissues (cyan). Per-
formed manually by an expert operator, this single-image segmen-
tation can take up to 25 minutes to accomplish. (c, d) Segmentation
of visceral adipose tissue (VAT) (red) and muscle (blue) on a different
patient using thresholding and region growing before manual editing
by a radiologist. Seed point for segmentation of VAT is placed in the
adipose tissue surrounding the right colon (green crosshair). Note
that the region growing algorithm is unable to distinguish VAT from
subcutaneous adipose tissue and that parts of the bowel are incor-
rectly labeled as VAT (white arrowhead). Also note that the region
growing algorithm incorrectly labels a loop of bowel as muscle (white
arrow). These errors all require manual editing by an expert reader.
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achieve acceptable segmentation performance. However, its
major limitation is the high computational resources
required at the time of deployment to segment each novel
case.38 Each new case presented to the tool requires the
system to perform numerous registration tasks with a full
library of atlases, a process that is computationally demand-
ing and requires a substantial amount of time. Decazes et al
reports that their MAS-based tool for segmentation of
muscle, VAT, and SATon attenuation correction CTs required
� 25minutes to segment each case.39 Although computa-
tional speedwill undoubtedly increase as technology advan-
ces, this could be offset by increasing the complexity of
algorithms.

Artificial Intelligence and Deep Learning

Overview
Artificial intelligence (AI) and deep machine learning (ML)
have recently garnered increased attention in the scientific
community and mainstream media. Although the terms
“artificial intelligence” and “machine learning” are often
used interchangeably, they are not synonymous. AI can be
understood as a system or machine that can mimic human
cognition to accomplish certain tasks. It can also be thought
of as any system that can use data to help guide or influence
its actions. ML, in contrast, refers more specifically to a
system or algorithm that is capable of learning and improv-
ing through the use of data. As such, ML is a method through
which AI can be achieved.

Recent advancements in hardware capabilities and algo-
rithm development have led to the increased popularity of
ML. Although ML can be applied to a wide spectrum of
clinical tasks and workflow in radiology, applications
focused on automating repetitive and tedious tasks will
likely have the greatest impact. Tasks such as image segmen-
tation and quantitative image analysis are particularly well
suited for ML algorithms because human readers tend to be
inefficient or inaccurate at performing these tasks. Focusing
ML development in these areas can help improve radiologist
performance by augmenting radiologists in areas where they
are naturally ineffective, allowing them to focus effort in
areas of strength (e.g., high-level diagnosis and synthesis of
clinical data).

Neural Networks
Currently, a popular framework for ML in imaging is the
artificial neural network. An artificial neural network can be
thought of as a digital model that simulates the cellular
framework of the brain. These models consist of numerous
interconnected nodes, with each node emulating the behav-
ior of a neuron and the connections acting as synapses
between neurons.

Neural networks are generally organized in layers of
nodes, with each additional layer and node adding to the
complexity and versatility of the model. With sufficient
depth, a neural network is capable of simulating complex
relationships between data. In a traditional neural network,
all nodes in the network share a connection with every node

Fig. 3 Example of atlas with 10 muscle labels overlaid on magnetic resonance image at (a) 1.5 T and (b) 3.0 T. The several labels used in the atlas
allow for differentiation of specific muscles and patient side. Average processing time per case was not reported. (Reprinted with permission
from Karlsson et al.41)
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in the preceding and subsequent layer and are therefore
considered “fully connected.”

Convolutional Neural Network
A variant of the neural network, the convolutional neural
network (CNN),wasshowntobeparticularlyeffective at visual
recognition and computer vision tasks, particularly with the
task of semantic image classification. In 2012, Krizhevsky et al
introduced aCNNat the annual ImageNet competition (Image-
Net Large-Scale Visual Recognition Challenge) and beat the
nearest competitor by a 41% margin in an image classification
task.42 In the years to follow, more complex CNNs would be
introduced and achieve classification error rates that were
lower than human benchmarks for a similar task.43,44

CNNs take advantageof the spatial relationship of pixels in
imaging data to greatly reduce the complexity and required
parameters of a neural network. CNNs replace the fully
connected architecture of traditional neural networks with
a computationally less demanding series of convolution and
data pooling operations. A convolution operation takes a set
of image filters with a limited receptive field (e.g., 3� 3 or
5� 5 pixels), marches it across the image at a predetermined
stride length, and computes the dot product between the
image pixels and the filter at each step. Doing so generates
two-dimensional activationmaps for eachfilter that are then
sent to the next layer of the network. Convolution is typically
followed by a data pooling operation that reduces the
dimensions of the data by combining the output of the
previous layer in clusters (typically 2� 2), effectively cutting
the dimensions of the data in half. A series of these convolu-
tion and pooling operations results in a progressively con-
tracting network architecture that takes high-resolution
pixel-level information and aggregates it into high-level
semantic information. The final layers of the CNN typically
consist of a few fully connected layers before generating an
output42 (►Fig. 4).

Fully Convolutional Neural Networks
Traditional CNN architectures such as AlexNet and ResNet
demonstrated high accuracy at image classification tasks and
were implemented successfully in a limited capacity in clinical

imaging tasks.45,46 As CNNs have gained popularity, adapta-
tions of CNN architectures have been developed to allow for
pixel-level semantic segmentation of images. Known as fully
CNNs, these architectures are capable of not only determining
what is containedwithin an image, but also to localize pixels of
interest. A popular implementation of the fully convolutional
neural network, the U-Net, achieves this by replacing the fully
connected portion of the CNN with an additional series of
convolution operations that are chained with up-sampling
deconvolutionoperations. Theseup-samplingoperationsserve
to serially increase the resolution of the output. In addition, at
each up-sampling step, high-resolution features from the
corresponding contracting path of the neural network are
combined with the up-sampled output to improve spatial
localization of sematic information. This architecture results
in a generally symmetrical contracting and expansive path
resulting in a U-shaped structure47,48 (►Fig. 5).

Applications of Deep Learning in Body
Composition Analysis

Deep Learning Algorithms for Image Segmentation
The availability of neural network architectures that allow
for pixel-level image segmentation presents an opportunity
for creating body composition analysis tools. Neural net-
works can be trained end to end, meaning the only data
required for training are input data (a set of images) and
corresponding output (a set of prelabeled segmentation
maps). As a result, the development of a model based on a
neural network is straightforward if training data are avail-
able. Furthermore, although the computational demands of
training neural networks can be quite high, using a pre-
trained neural network to make predictions on novel data
requires relatively minimal amounts of computing power,
such that nearly any modern personal computer would be
capable of running the model. This is in contrast to multiple
atlas-based algorithms where significant computational
demand occurs at the time of prediction.

The U-Net architecture has proven to be effective at segmen-
tation of two-dimensional biomedical images. In the case of
body composition analysis, Bridge et al demonstrated aU-Net is

Fig. 4 Diagram illustrating the architecture of a convolutional neural network (CNN) showing a single convolution and pooling operation
followed by a single fully connected layer (typical CNN architectures contain numerous consecutive convolution and pooling steps followed by
several fully connected layers before prediction).
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capable of segmenting VAT, SAT, and skeletal muscle on a single
CT slice obtained at the L3 level with a high level of accuracy,
achieving mean Dice scores of 0.95, 0.98, and 0.97 for VAT, SAT,
and skeletalmuscle, respectively.49 Thiswas accomplishedwith
a data set of 595 manually segmented CT images divided into
412 training, 94 validation, and 89 test cases. Their trained
model required0.02 to0.025 seconds toperformsegmentations
on novel cases while running on a Nvidia V100 GPU and
0.60 seconds while running on a central processing unit (CPU).
These results prove that neural networks can create tools for
body composition measurements that could be deployed in
large-scalecohort studies. Furthermore, thespeedatwhichsuch
segmentations can be performed points toward easier adoption
in a variety of clinical and research workflows (►Fig. 6).

Weston et al expanded on the previously published work
by training a U-Net to segment a total of five tissue classes
(muscle, bone, visceral fat-free tissue, SAT, and VAT) on a
single CTslice at L3 using a data set of 2,700 studies (2,430 for
training and 270 for test data set). Dice scores for each tissue
class were 0.96 (muscle), 0.98 (bone), 0.97 (visceral fat-free
tissue), 0.98 (SAT), and 0.94 (VAT). In addition, Weston and
colleagues demonstrated the generalizability of the trained
model to perform image segmentation at a different ana-
tomical level. In their study, they demonstrate no statistically
significant difference in model performance for identifying
the SAT, muscle, and visceral compartment when imple-
mented on novel CT images acquired at L3 and L4 (model
trained only on images acquired at L3).50

Accelerating the Development of Deep Learning
Algorithms
The work of Bridge et al and Weston et al demonstrates
promise in implementing deep learning algorithms for body
composition measurements. However, the large amount of
training data needed to effectively train deep learning algo-
rithms limits the speed at which algorithms can be developed
and deployed. Additionally, because deep learning algorithm
performance is highly specific to the data set on which the
model was trained, it may be difficult to generalize a model
trained at one institution to another where imaging param-
eters and protocols are different. One solution to this problem
would be to build a training data set containing labeled images
from numerous institutions with differing imaging protocols
and parameters. However, doing so further increases the
burden of creating a sufficiently large data set.

Alternatively, further work has been pursued, building on
the work by Bridge et al and Weston et al, by implementing
data augmentation to train a U-Net with a relatively small
number of training examples. Data augmentation is a re-
source in ML that allows for greatly expanding a limited
training data set through random image transformations
such as deformations, horizontal mirroring, cropping, mag-
nification, and addition of noise. Doing so facilitates training
neural networks with small data sets, such as those com-
monly encountered in biomedical research studies.48,51 In
our experience, preliminary results demonstrate that a
U-Net trained with a limited number of training examples
(n¼ 140) yielded an overall mean Dice score of 96%, with
individual tissue class Dice scores of 87% (bone), 91% (mus-
cle), 89% (bowel/solid organs), 94% (SAT), and 81% (VAT).52 A
similar workflow can be applied to body composition meas-
urements in other anatomical areas, such as assessment of
muscle mass in the pelvis. Using a similar technique, we
trained a U-Net model with a training data set of 200 CT
images of the pelvis at the level of the acetabular roof. With
data augmentation, the model was trained to segment the
pelvic cavity, SAT, muscle, IMAT, and bone, yielding Dice
scores of 0.98, 0.97, 0.95, 0.91, and 0.92, respectively.53 These
results demonstrate the feasibility of using data augmenta-
tion to rapidly prototype neural network models to perform
body composition measurements at varying anatomical
locations (►Fig. 7).

Fig. 6 (a) Noncontrast computed tomography axial image obtained
at the level of T12. (b) Automated segmentation of tissue compart-
ments for body composition analysis using U-Net CNN: subcutaneous
(green) and intermuscular (yellow) adipose tissue, muscle (blue),
bone (magenta), and other tissues (cyan). This segmentation was
generated on a CPU in 4.3 seconds.

Fig. 5 Schematic illustrating the U-Net architecture. From left to
right, the model architecture receives a 512� 512-pixel grayscale
image that goes through a series of convolution and pooling oper-
ations, sequentially reducing the dimensions of the data. This is
followed by a series of up-sampling and convolution operations that
increase the dimensions of the data back to the original 512� 512
size. Additionally, at each up-sampling stage, data from the equivalent
contracting limb are concatenated with the data matrix to help
improve spatial localization of high-level semantic information to
improve segmentation performance. The architecture results in a
U-shaped network as illustrated. (Reprinted from Hemke et al.53)
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Deep Learning Body Composition Tools in Practice
With several deep learning models for body composition
measurements in hand, future development will involve
integration of trained models into clinical and/or scientific
workflows. This represents a critical step because it will
allow delivery of valuable metabolic information in tandem
with traditional imaging reports. An example of this work-
flow would be information such as muscle mass, VAT, and
SAT content being automatically measured in the back-
ground from abdominal CTs obtained for various indications
(cancer, staging, etc.) and inserted into reporting systems.
This type of workflow can be highly desirable because the
cost of image acquisition is obviated by the original indica-
tion; however, prognostic body composition information can
be obtained with high accuracy, adding value to the patient’s
care. With the increasing body of evidence linking various
body composition measurements to patient outcomes, hav-
ing this data readily available to clinicians and scientists will
greatly accelerate the development of improved predictive
models and treatment algorithms.

Conclusion

Body composition has a significant impact on health out-
comes in a wide variety of clinical settings. As such, the
need for reliable and fast methods to measure body com-
position continues to grow. Traditional standards to per-
form these measurements through manual segmentation of
cross-sectional imaging studies is labor intensive and time
consuming, severely limiting widespread adoption. Innova-
tions in ML and neural networks have provided novel
applications to automate body composition analysis. CNNs
can quickly and accurately segment cross-sectional images
and be deployed without need for advanced hardware. As a
result, trained neural networks can more readily be imple-
mented for large-scale studies and widespread clinical use.
Furthermore, given the characteristics of this technology, it
is more feasible to develop algorithms that can manage
volumetric data (i.e., full image stacks from a CT or MRI). In
summary, technological advance introduced by AI and ML
have contributed to make body composition data more
easily available, allowing health care professionals to better
care for patients and advance scientific research in large
cohorts.
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