Clin Colon Rectal Surg 2020; 33(02): 049-057
DOI: 10.1055/s-0040-1701229
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Clostridium difficile Infection: An Epidemiology Update

Ana C. De Roo
1   Center for Healthcare Outcomes and Policy, University of Michigan, Ann Arbor, Michigan
2   Department of Surgery, University of Michigan, Ann Arbor, Michigan
,
Scott E. Regenbogen
1   Center for Healthcare Outcomes and Policy, University of Michigan, Ann Arbor, Michigan
2   Department of Surgery, University of Michigan, Ann Arbor, Michigan
› Author Affiliations
Further Information

Publication History

Publication Date:
25 February 2020 (online)

Abstract

Clostridium (reclassified as “Clostridioides”) difficile infection (CDI) is a healthcare-associated infection and significant source of potentially preventable morbidity, recurrence, and death, particularly among hospitalized older adults. Additional risk factors include antibiotic use and severe underlying illness. The increasing prevalence of community-associated CDI is gaining recognition as a novel source of morbidity in previously healthy patients. Even after recovery from initial infection, patients remain at risk for recurrence or reinfection with a new strain. Some pharmaco-epidemiologic studies have suggested an increased risk associated with proton pump inhibitors and protective effect from statins, but these findings have not been uniformly reproduced in all studies. Certain ribotypes of C. difficile, including the BI/NAP1/027, 106, and 018, are associated with increased antibiotic resistance and potential for higher morbidity and mortality. CDI remains a high-morbidity healthcare-associated infection, and better understanding of ribotypes and medication risk factors could help to target treatment, particularly for patients with high recurrence risk.

 
  • References

  • 1 Hensgens MP, Keessen EC, Squire MM. , et al; European Society of Clinical Microbiology and Infectious Diseases Study Group for Clostridium difficile (ESGCD). Clostridium difficile infection in the community: a zoonotic disease?. Clin Microbiol Infect 2012; 18 (07) 635-645
  • 2 Dharmasena M, Jiang X. Isolation of toxigenic Clostridium difficile from animal manure and composts being used as biological soil amendments. Appl Environ Microbiol 2018; 84 (16) e00738-e18
  • 3 McDonald LC, Gerding DN, Johnson S. , et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis 2018; 66 (07) 987-994
  • 4 Calfee DP. Prevention and Control of Healthcare-Associated Infections. Goldman-Cecil Medicine. 25 ed. Philadelphia, PA: Elsevier-Saunders; 2016: 1861-1868
  • 5 Karanika S, Paudel S, Zervou FN, Grigoras C, Zacharioudakis IM, Mylonakis E. Prevalence and clinical outcomes of Clostridium difficile infection in the intensive care unit: a systematic review and meta-analysis. Open Forum Infect Dis 2015; 3 (01) ofv186
  • 6 Tariq R, Law CCY, Khanna S, Murthy S, McCurdy JD. The impact of Clostridium difficile infection on mortality in patients with inflammatory bowel disease: a systematic review and meta-analysis. J Clin Gastroenterol 2019; 53 (02) 127-133
  • 7 Lessa FC, Gould CV, McDonald LC. Current status of Clostridium difficile infection epidemiology. Clin Infect Dis 2012; 55 (Suppl. 02) S65-S70
  • 8 Murphy SL, Xu J, Kochanek KD, Curtin SC, Arias E. Deaths: final data for 2015. Natl Vital Stat Rep 2017; 66 (06) 1-75
  • 9 Centers for Disease Control and Prevention. 2014 national and state healthcare-associated infections progress report. Available at: https://www.cdc.gov/hai/data/portal/progress-report.html . Accessed October 30, 2019
  • 10 Balsells E, Filipescu T, Kyaw MH, Wiuff C, Campbell H, Nair H. Infection prevention and control of Clostridium difficile: a global review of guidelines, strategies, and recommendations. J Glob Health 2016; 6 (02) 020410
  • 11 Centers for Disease Control and Prevention (CDC). Vital signs: preventing Clostridium difficile infections. MMWR Morb Mortal Wkly Rep 2012; 61 (09) 157-162
  • 12 Zhang S, Palazuelos-Munoz S, Balsells EM, Nair H, Chit A, Kyaw MH. Cost of hospital management of Clostridium difficile infection in United States-a meta-analysis and modelling study. BMC Infect Dis 2016; 16 (01) 447
  • 13 Scott II RD. ; Centers for Disease Control and Prevention. The Direct Medical Costs of Healthcare-Associated Infections in U.S. Hospitals and the Benefits of Prevention. Available at: https://www.cdc.gov/hai/pdfs/hai/scott_costpaper.pdf . Accessed October 30, 2019
  • 14 Zilberberg MD, Shorr AF, Wang L, Baser O, Yu H. Development and validation of a risk score for Clostridium difficile infection in medicare beneficiaries: a population-based cohort study. J Am Geriatr Soc 2016; 64 (08) 1690-1695
  • 15 Tartof SY, Rieg GK, Wei R, Tseng HF, Jacobsen SJ, Yu KC. A Comprehensive assessment across the healthcare continuum: risk of hospital-associated Clostridium difficile infection due to outpatient and inpatient antibiotic exposure. Infect Control Hosp Epidemiol 2015; 36 (12) 1409-1416
  • 16 Harris AD, Sbarra AN, Leekha S. , et al. Electronically available comorbid conditions for risk prediction of healthcare-associated Clostridium difficile infection. Infect Control Hosp Epidemiol 2018; 39 (03) 297-301
  • 17 Stevens V, Dumyati G, Brown J, Wijngaarden E. Differential risk of Clostridium difficile infection with proton pump inhibitor use by level of antibiotic exposure. Pharmacoepidemiol Drug Saf 2011; 20 (10) 1035-1042
  • 18 Aquina CT, Probst CP, Becerra AZ. , et al. High variability in nosocomial Clostridium difficile infection rates across hospitals after colorectal resection. Dis Colon Rectum 2016; 59 (04) 323-331
  • 19 Abdelsattar ZM, Krapohl G, Alrahmani L. , et al. Postoperative burden of hospital-acquired Clostridium difficile infection. Infect Control Hosp Epidemiol 2015; 36 (01) 40-46
  • 20 Barie PS. Surgical infections and antibiotic use. In: Townsend CM, Beauchamp RD, Evers BM, Mattox KL. eds. Sabiston Textbook of Surgery 20th ed.: The Biological Basis of Modern Surgical Practice. Elsevier; 2017: 241-280
  • 21 Galdys AL, Nelson JS, Shutt KA. , et al. Prevalence and duration of asymptomatic Clostridium difficile carriage among healthy subjects in Pittsburgh, Pennsylvania. J Clin Microbiol 2014; 52 (07) 2406-2409
  • 22 Miyajima F, Roberts P, Swale A. , et al. Characterisation and carriage ratio of Clostridium difficile strains isolated from a community-dwelling elderly population in the United Kingdom. PLoS One 2011; 6 (08) e22804
  • 23 Rea MC, O'Sullivan O, Shanahan F. , et al. Clostridium difficile carriage in elderly subjects and associated changes in the intestinal microbiota. J Clin Microbiol 2012; 50 (03) 867-875
  • 24 Kyne L, Warny M, Qamar A, Kelly CP. Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med 2000; 342 (06) 390-397
  • 25 Loo VG. , Ian Davis, John Embil, et al. Association of medical microbiology and infectious disease Canada treatment practice guidelines for Clostridium difficile infection. Official Journal of the Association of Medical Microbiology and Infectious Disease Canada 2018; 3 (02) 71-92
  • 26 Fujitani S, George WL, Murthy AR. Comparison of clinical severity score indices for Clostridium difficile infection. Infect Control Hosp Epidemiol 2011; 32 (03) 220-228
  • 27 Cohen SH, Gerding DN, Johnson S. , et al; Society for Healthcare Epidemiology of America; Infectious Diseases Society of America. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol 2010; 31 (05) 431-455
  • 28 McDonald LC, Coignard B, Dubberke E, Song X, Horan T, Kutty PK. ; Ad Hoc Clostridium difficile Surveillance Working Group. Recommendations for surveillance of Clostridium difficile-associated disease. Infect Control Hosp Epidemiol 2007; 28 (02) 140-145
  • 29 Henrich TJ, Krakower D, Bitton A, Yokoe DS. Clinical risk factors for severe Clostridium difficile-associated disease. Emerg Infect Dis 2009; 15 (03) 415-422
  • 30 Lessa FC, Mu Y, Bamberg WM. , et al. Burden of Clostridium difficile infection in the United States. N Engl J Med 2015; 372 (09) 825-834
  • 31 Sheitoyan-Pesant C, Abou Chakra CN, Pépin J, Marcil-Héguy A, Nault V, Valiquette L. Clinical and healthcare burden of multiple recurrences of Clostridium difficile infection. Clin Infect Dis 2016; 62 (05) 574-580
  • 32 Gerding DN, Lessa FC. The epidemiology of Clostridium difficile infection inside and outside health care institutions. Infect Dis Clin North Am 2015; 29 (01) 37-50
  • 33 Freedberg DE, Salmasian H, Friedman C, Abrams JA. Proton pump inhibitors and risk for recurrent Clostridium difficile infection among inpatients. Am J Gastroenterol 2013; 108 (11) 1794-1801
  • 34 Reveles KR, Mortensen EM, Koeller JM. , et al. Derivation and validation of a Clostridium difficile infection recurrence prediction rule in a national cohort of veterans. Pharmacotherapy 2018; 38 (03) 349-356
  • 35 Rotramel A, Poritz LS, Messaris E, Berg A, Stewart DB. PPI therapy and albumin are better predictors of recurrent Clostridium difficile colitis than choice of antibiotics. J Gastrointest Surg 2012; 16 (12) 2267-2273
  • 36 Kim J, Seo MR, Kang JO, Kim Y, Hong SP, Pai H. Clinical characteristics of relapses and re-infections in Clostridium difficile infection. Clin Microbiol Infect 2014; 20 (11) 1198-1204
  • 37 Durovic A, Widmer AF, Frei R, Tschudin-Sutter S. Distinguishing Clostridium difficile recurrence from reinfection: independent validation of current recommendations. Infect Control Hosp Epidemiol 2017; 38 (08) 891-896
  • 38 Chang JY, Antonopoulos DA, Kalra A. , et al. Decreased diversity of the fecal Microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis 2008; 197 (03) 435-438
  • 39 Keller JJ, Kuijper EJ. Treatment of recurrent and severe Clostridium difficile infection. Annu Rev Med 2015; 66: 373-386
  • 40 Bauer MP, Nibbering PH, Poxton IR, Kuijper EJ, van Dissel JT. Humoral immune response as predictor of recurrence in Clostridium difficile infection. Clin Microbiol Infect 2014; 20 (12) 1323-1328
  • 41 Chitnis AS, Holzbauer SM, Belflower RM. , et al. Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011. JAMA Intern Med 2013; 173 (14) 1359-1367
  • 42 Khanna S, Pardi DS, Aronson SL. , et al. The epidemiology of community-acquired Clostridium difficile infection: a population-based study. Am J Gastroenterol 2012; 107 (01) 89-95
  • 43 Fawley WN, Davies KA, Morris T, Parnell P, Howe R, Wilcox MH. ; Clostridium difficile Ribotyping Network (CDRN) Working Group. Enhanced surveillance of Clostridium difficile infection occurring outside hospital, England, 2011 to 2013. Euro Surveill 2016 21. (29):
  • 44 Ofori E, Ramai D, Dhawan M, Mustafa F, Gasperino J, Reddy M. Community-acquired Clostridium difficile: epidemiology, ribotype, risk factors, hospital and intensive care unit outcomes, and current and emerging therapies. J Hosp Infect 2018; 99 (04) 436-442
  • 45 Kwon SS, Gim JL, Kim MS. , et al. Clinical and molecular characteristics of community-acquired Clostridium difficile infections in comparison with those of hospital-acquired C. difficile . Anaerobe 2017; 48: 42-46
  • 46 Kuntz JL, Chrischilles EA, Pendergast JF, Herwaldt LA, Polgreen PM. Incidence of and risk factors for community-associated Clostridium difficile infection: a nested case-control study. BMC Infect Dis 2011; 11: 194
  • 47 Orden C, Neila C, Blanco JL. , et al. Recreational sandboxes for children and dogs can be a source of epidemic ribotypes of Clostridium difficile . Zoonoses Public Health 2018; 65 (01) 88-95
  • 48 Archimandritis A, Souyioultzis S, Katsorida M, Tzivras M. Clostridium difficile colitis associated with a ‘triple’ regimen, containing clarithromycin and metronidazole, to eradicate Helicobacter pylori. J Intern Med 1998; 243 (03) 251-253
  • 49 Bühling A, Radun D, Müller WA, Malfertheiner P. Influence of anti-Helicobacter triple-therapy with metronidazole, omeprazole and clarithromycin on intestinal microflora. Aliment Pharmacol Ther 2001; 15 (09) 1445-1452
  • 50 Cunningham R, Dale B, Undy B, Gaunt N. Proton pump inhibitors as a risk factor for Clostridium difficile diarrhoea. J Hosp Infect 2003; 54 (03) 243-245
  • 51 Alhazzani W, Guyatt G, Alshahrani M. , et al; Canadian Critical Care Trials Group. Withholding pantoprazole for stress ulcer prophylaxis in critically ill patients: a pilot randomized clinical trial and meta-analysis. Crit Care Med 2017; 45 (07) 1121-1129
  • 52 Lowe DO, Mamdani MM, Kopp A, Low DE, Juurlink DN. Proton pump inhibitors and hospitalization for Clostridium difficile-associated disease: a population-based study. Clin Infect Dis 2006; 43 (10) 1272-1276
  • 53 Depoorter L, Verhaegen J, Joosten E. Use of proton pump inhibitors and risk of nosocomial Clostridium difficile infection in hospitalized elderly adults. J Am Geriatr Soc 2016; 64 (03) 667-669
  • 54 Novack L, Kogan S, Gimpelevich L. , et al. Acid suppression therapy does not predispose to Clostridium difficile infection: the case of the potential bias. PLoS One 2014; 9 (10) e110790
  • 55 Nseir W, Bishara J, Mograbi J. , et al. Do statins protect against the development of Clostridium difficile-associated diarrhoea?. J Antimicrob Chemother 2013; 68 (08) 1889-1893
  • 56 Shah S, Lewis A, Leopold D, Dunstan F, Woodhouse K. Gastric acid suppression does not promote clostridial diarrhoea in the elderly. QJM 2000; 93 (03) 175-181
  • 57 Leontiadis GI, Miller MA, Howden CW. How much do PPIs contribute to C. difficile infections?. Am J Gastroenterol 2012; 107 (07) 1020-1021
  • 58 Khanna S, Aronson SL, Kammer PP, Baddour LM, Pardi DS. Gastric acid suppression and outcomes in Clostridium difficile infection: a population-based study. Mayo Clin Proc 2012; 87 (07) 636-642
  • 59 Faleck DM, Salmasian H, Furuya EY, Larson EL, Abrams JA, Freedberg DE. Proton pump inhibitors do not increase risk for Clostridium difficile infection in the intensive care unit. Am J Gastroenterol 2016; 111 (11) 1641-1648
  • 60 Beaulieu M, Williamson D, Pichette G, Lachaine J. Risk of Clostridium difficile-associated disease among patients receiving proton-pump inhibitors in a Quebec medical intensive care unit. Infect Control Hosp Epidemiol 2007; 28 (11) 1305-1307
  • 61 Cao F, Chen CX, Wang M. , et al. Updated meta-analysis of controlled observational studies: proton-pump inhibitors and risk of Clostridium difficile infection. J Hosp Infect 2018; 98 (01) 4-13
  • 62 Arriola V, Tischendorf J, Musuuza J, Barker A, Rozelle JW, Safdar N. Assessing the risk of hospital-acquired Clostridium difficile infection with proton pump inhibitor use: a meta-analysis. Infect Control Hosp Epidemiol 2016; 37 (12) 1408-1417
  • 63 Deshpande A, Pant C, Pasupuleti V. , et al. Association between proton pump inhibitor therapy and Clostridium difficile infection in a meta-analysis. Clin Gastroenterol Hepatol 2012; 10 (03) 225-233
  • 64 Janarthanan S, Ditah I, Adler DG, Ehrinpreis MN. Clostridium difficile-associated diarrhea and proton pump inhibitor therapy: a meta-analysis. Am J Gastroenterol 2012; 107 (07) 1001-1010
  • 65 Kwok CS, Arthur AK, Anibueze CI, Singh S, Cavallazzi R, Loke YK. Risk of Clostridium difficile infection with acid suppressing drugs and antibiotics: meta-analysis. Am J Gastroenterol 2012; 107 (07) 1011-1019
  • 66 Oshima T, Wu L, Li M, Fukui H, Watari J, Miwa H. Magnitude and direction of the association between Clostridium difficile infection and proton pump inhibitors in adults and pediatric patients: a systematic review and meta-analysis. J Gastroenterol 2018; 53 (01) 84-94
  • 67 Tleyjeh IM, Bin Abdulhak AA, Riaz M. , et al. Association between proton pump inhibitor therapy and Clostridium difficile infection: a contemporary systematic review and meta-analysis. PLoS One 2012; 7 (12) e50836
  • 68 Trifan A, Stanciu C, Girleanu I. , et al. Proton pump inhibitors therapy and risk of Clostridium difficile infection: systematic review and meta-analysis. World J Gastroenterol 2017; 23 (35) 6500-6515
  • 69 Dial S, Alrasadi K, Manoukian C, Huang A, Menzies D. Risk of Clostridium difficile diarrhea among hospital inpatients prescribed proton pump inhibitors: cohort and case-control studies. CMAJ 2004; 171 (01) 33-38
  • 70 Tariq R, Singh S, Gupta A, Pardi DS, Khanna S. Association of gastric acid suppression with recurrent Clostridium difficile infection: a systematic review and meta-analysis. JAMA Intern Med 2017; 177 (06) 784-791
  • 71 Goldstein EJ, Johnson S, Maziade PJ. , et al. Pathway to prevention of nosocomial Clostridium difficile infection. Clin Infect Dis 2015; 60 (Suppl. 02) S148-S158
  • 72 FDA Drug Safety Communication: Clostridium difficile associated diarrhea can be associated with stomach acid drugs known as proton pump inhibitors (PPIs). Available at: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-clostridium-difficile-associated-diarrhea-can-be-associated-stomach . Accessed October 30, 2019
  • 73 Nehra AK, Alexander JA, Loftus CG, Nehra V. Proton pump inhibitors: review of emerging concerns. Mayo Clin Proc 2018; 93 (02) 240-246
  • 74 Yang YX, Metz DC. Safety of proton pump inhibitor exposure. Gastroenterology 2010; 139 (04) 1115-1127
  • 75 Bavishi C, Dupont HL. Systematic review: the use of proton pump inhibitors and increased susceptibility to enteric infection. Aliment Pharmacol Ther 2011; 34 (11,12): 1269-1281
  • 76 Le Bastard Q, Al-Ghalith GA, Grégoire M. , et al. Systematic review: human gut dysbiosis induced by non-antibiotic prescription medications. Aliment Pharmacol Ther 2018; 47 (03) 332-345
  • 77 Freedberg DE, Toussaint NC, Chen SP. , et al. Proton pump inhibitors alter specific taxa in the human gastrointestinal microbiome: a crossover trial. Gastroenterology 2015; 149 (04) 883-5.e9
  • 78 Clooney AG, Bernstein CN, Leslie WD. , et al. A comparison of the gut microbiome between long-term users and non-users of proton pump inhibitors. Aliment Pharmacol Ther 2016; 43 (09) 974-984
  • 79 Jackson MA, Goodrich JK, Maxan ME. , et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut 2016; 65 (05) 749-756
  • 80 Wilson KH. Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J Clin Microbiol 1983; 18 (04) 1017-1019
  • 81 Theisen J, Nehra D, Citron D. , et al. Suppression of gastric acid secretion in patients with gastroesophageal reflux disease results in gastric bacterial overgrowth and deconjugation of bile acids. J Gastrointest Surg 2000; 4 (01) 50-54
  • 82 Thorens J, Froehlich F, Schwizer W. , et al. Bacterial overgrowth during treatment with omeprazole compared with cimetidine: a prospective randomised double blind study. Gut 1996; 39 (01) 54-59
  • 83 Nerandzic MM, Pultz MJ, Donskey CJ. Examination of potential mechanisms to explain the association between proton pump inhibitors and Clostridium difficile infection. Antimicrob Agents Chemother 2009; 53 (10) 4133-4137
  • 84 Yu YH, Han DS, Choi EY. , et al. Is use of PPIs related to increased intraepithelial lymphocytes in the colon?. Dig Dis Sci 2012; 57 (10) 2669-2674
  • 85 Hung YP, Ko WC, Chou PH. , et al. Proton-pump inhibitor exposure aggravates Clostridium difficile-associated colitis: evidence from a mouse model. J Infect Dis 2015; 212 (04) 654-663
  • 86 Kaur S, Vaishnavi C, Prasad KK, Ray P, Kochhar R. Comparative role of antibiotic and proton pump inhibitor in experimental Clostridium difficile infection in mice. Microbiol Immunol 2007; 51 (12) 1209-1214
  • 87 Hegarty JP, Sangster W, Harris III LR, Stewart DB. Proton pump inhibitors induce changes in colonocyte gene expression that may affect Clostridium difficile infection. Surgery 2014; 156 (04) 972-978
  • 88 Azab M, Doo L, Doo DH. , et al. Comparison of the hospital-acquired Clostridium difficile infection risk of using proton pump inhibitors versus histamine-2 receptor antagonists for prophylaxis and treatment of stress ulcers: a systematic review and meta-analysis. Gut Liver 2017; 11 (06) 781-788
  • 89 Tariq R, Mukhija D, Gupta A, Singh S, Pardi DS, Khanna S. Statin use and the risk of Clostridium difficile infection: a systematic review with meta-analysis. Infect Drug Resist 2018; 11: 405-416
  • 90 Motzkus-Feagans CA, Pakyz A, Polk R, Gambassi G, Lapane KL. Statin use and the risk of Clostridium difficile in academic medical centres. Gut 2012; 61 (11) 1538-1542
  • 91 Park SW, Choi AR, Lee HJ. , et al. The effects of statins on the clinical outcomes of Clostridium difficile infection in hospitalised patients. Aliment Pharmacol Ther 2013; 38 (06) 619-627
  • 92 Abdelfatah MNR, Enriquez K, Nijim A, El Zoghbi M, Watkins R. The effect of statins on the risk of recurrent Clostridium difficile infection. American College of Gastroenterology Annual scientific meeting; October 17–22, 2014, 2014; Philadelphia, PA
  • 93 Atamna A, Yahav D, Eliakim-Raz N. , et al. The effect of statins on the outcome of Clostridium difficile infection in hospitalized patients. Eur J Clin Microbiol Infect Dis 2016; 35 (05) 779-784
  • 94 Lee SJ, Qin H, Benveniste EN. The IFN-gamma-induced transcriptional program of the CIITA gene is inhibited by statins. Eur J Immunol 2008; 38 (08) 2325-2336
  • 95 McGuire T, Dobesh P, Klepser D, Rupp M, Olsen K. Clinically important interaction between statin drugs and Clostridium difficile toxin?. Med Hypotheses 2009; 73 (06) 1045-1047
  • 96 Konat GW, Krasowska-Zoladek A, Kraszpulski M. Statins enhance toll-like receptor 4-mediated cytokine gene expression in astrocytes: implication of Rho proteins in negative feedback regulation. J Neurosci Res 2008; 86 (03) 603-609
  • 97 Lee SJ, Qin H, Benveniste EN. Simvastatin inhibits IFN-gamma-induced CD40 gene expression by suppressing STAT-1alpha. J Leukoc Biol 2007; 82 (02) 436-447
  • 98 Methe H, Kim JO, Kofler S, Nabauer M, Weis M. Statins decrease Toll-like receptor 4 expression and downstream signaling in human CD14+ monocytes. Arterioscler Thromb Vasc Biol 2005; 25 (07) 1439-1445
  • 99 Degraeve F, Bolla M, Blaie S. , et al. Modulation of COX-2 expression by statins in human aortic smooth muscle cells. Involvement of geranylgeranylated proteins. J Biol Chem 2001; 276 (50) 46849-46855
  • 100 Masadeh M, Mhaidat N, Alzoubi K, Al-Azzam S, Alnasser Z. Antibacterial activity of statins: a comparative study of atorvastatin, simvastatin, and rosuvastatin. Ann Clin Microbiol Antimicrob 2012; 11: 13
  • 101 Hausding M, Witteck A, Rodriguez-Pascual F, von Eichel-Streiber C, Förstermann U, Kleinert H. Inhibition of small G proteins of the rho family by statins or clostridium difficile toxin B enhances cytokine-mediated induction of NO synthase II. Br J Pharmacol 2000; 131 (03) 553-561
  • 102 Bergman P, Linde C, Pütsep K. , et al. Studies on the antibacterial effects of statins--in vitro and in vivo. PLoS One 2011; 6 (08) e24394
  • 103 Nicholas A, Kim YK, Lee WK. , et al. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolates from two Korean hospitals. PLoS One 2017; 12 (03) e0174716
  • 104 Freeman J, Bauer MP, Baines SD. , et al. The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev 2010; 23 (03) 529-549
  • 105 Freeman J, Vernon J, Pilling S. , et al; Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes Study Group. The ClosER study: results from a three-year pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes, 2011-2014. Clin Microbiol Infect 2018; 24 (07) 724-731
  • 106 Freeman J, Vernon J, Morris K. , et al; Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes' Study Group. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect 2015; 21 (03) 248.e9-248.e16
  • 107 Lee Y, Kim M, Kim H, Lee K. Comparison of sensitivity of enzyme immunoassays for toxin A and B in different C. difficile PCR ribotypes. Ann Clin Lab Sci 2014; 44 (01) 38-41
  • 108 Goorhuis A, Bakker D, Corver J. , et al. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 2008; 47 (09) 1162-1170
  • 109 Eyre DW, Davies KA, Davis G. , et al; EUCLID Study Group. Two distinct patterns of Clostridium difficile diversity across europe indicating contrasting routes of spread. Clin Infect Dis 2018; 67 (07) 1035-1044
  • 110 Jovanović M, Drakulović M, Tošić T, Stošović R, Jovanović S. Occurrence of Clostridium difficile infections in Serbia and high proportion of PCR ribotype 027 strains in two hospitals in Belgrade. Anaerobe 2018; 51: 64-67
  • 111 Salazar CL, Reyes C, Cienfuegos-Gallet AV. , et al. Subtyping of Clostridium difficile PCR ribotypes 591, 106 and 002, the dominant strain types circulating in Medellin, Colombia. PLoS One 2018; 13 (04) e0195694
  • 112 Solomon K, Fanning S, McDermott S. , et al. PCR ribotype prevalence and molecular basis of macrolide-lincosamide-streptogramin B (MLSB) and fluoroquinolone resistance in Irish clinical Clostridium difficile isolates. J Antimicrob Chemother 2011; 66 (09) 1976-1982
  • 113 O'Connor JR, Johnson S, Gerding DN. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology 2009; 136 (06) 1913-1924
  • 114 Karlowsky JA, Adam HJ, Kosowan T. , et al. PCR ribotyping and antimicrobial susceptibility testing of isolates of Clostridium difficile cultured from toxin-positive diarrheal stools of patients receiving medical care in Canadian hospitals: the Canadian Clostridium difficile Surveillance Study (CAN-DIFF) 2013-2015. Diagn Microbiol Infect Dis 2018; 91 (02) 105-111
  • 115 Carlson Jr. PE, Walk ST, Bourgis AE. , et al. The relationship between phenotype, ribotype, and clinical disease in human Clostridium difficile isolates. Anaerobe 2013; 24: 109-116
  • 116 Sundram F, Guyot A, Carboo I, Green S, Lilaonitkul M, Scourfield A. Clostridium difficile ribotypes 027 and 106: clinical outcomes and risk factors. J Hosp Infect 2009; 72 (02) 111-118
  • 117 Wilcox MH, Shetty N, Fawley WN. , et al. Changing epidemiology of Clostridium difficile infection following the introduction of a national ribotyping-based surveillance scheme in England. Clin Infect Dis 2012; 55 (08) 1056-1063
  • 118 Han SH, Kim H, Lee K. , et al. Epidemiology and clinical features of toxigenic culture-confirmed hospital-onset Clostridium difficile infection: a multicentre prospective study in tertiary hospitals of South Korea. J Med Microbiol 2014; 63 (Pt. 11): 1542-1551
  • 119 Kim J, Kang JO, Kim H. , et al. Epidemiology of Clostridium difficile infections in a tertiary-care hospital in Korea. Clin Microbiol Infect 2013; 19 (06) 521-527
  • 120 Senoh M, Kato H, Fukuda T. , et al. Predominance of PCR-ribotypes, 018 (smz) and 369 (trf) of Clostridium difficile in Japan: a potential relationship with other global circulating strains?. J Med Microbiol 2015; 64 (10) 1226-1236
  • 121 Barbanti F, Spigaglia P. Characterization of Clostridium difficile PCR-ribotype 018: a problematic emerging type. Anaerobe 2016; 42: 123-129
  • 122 Serafino S, Consonni D, Migone De Amicis M. , et al. Clinical outcomes of Clostridium difficile infection according to strain type. A prospective study in medical wards. Eur J Intern Med 2018; 54: 21-26
  • 123 Baldan R, Trovato A, Bianchini V. , et al. Clostridium difficile PCR ribotype 018, a successful epidemic genotype. J Clin Microbiol 2015; 53 (08) 2575-2580
  • 124 Kim J, Kim Y, Pai H. Clinical characteristics and treatment outcomes of Clostridium difficile infections by pcr ribotype 017 and 018 strains. PLoS One 2016; 11 (12) e0168849
  • 125 Bauer MP, Notermans DW, van Benthem BH. , et al; ECDIS Study Group. Clostridium difficile infection in Europe: a hospital-based survey. Lancet 2011; 377 (9759): 63-73
  • 126 Wiuff C, Brown DJ, Mather H, Banks AL, Eastaway A, Coia JE. The epidemiology of Clostridium difficile in Scotland. J Infect 2011; 62 (04) 271-279
  • 127 Ratnayake L, McEwen J, Henderson N. , et al. Control of an outbreak of diarrhoea in a vascular surgery unit caused by a high-level clindamycin-resistant Clostridium difficile PCR ribotype 106. J Hosp Infect 2011; 79 (03) 242-247
  • 128 Vohra P, Poxton IR. Comparison of toxin and spore production in clinically relevant strains of Clostridium difficile . Microbiology 2011; 157 (Pt. 5): 1343-1353