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Introduction

Microneedles are microscale structures that are designed to
overcome the skin barrier for successful intradermal delivery
of drugs and vaccines. They generally have a length ranging
from 200µm to 1mm and therefore can avoid stimulating
nerve endings when applied into the skin.1–4 Comparedwith
traditional injections with hypodermic needles, micronee-
dle-mediated intradermal delivery of biotherapeutics have
several advantages, including improved patient compliance,
potential for self-administration, avoidance of needle stick
injury, and infection risk due to reuse of needles.5 Micro-
needles can also improve the stability of loaded biothera-
peutics and potentially decrease side effects associated to
systemic administration.6–11

Microneedles have been classified into coated, hollow,
and polymer-based dissolving microneedles. The fabrication

methods, various features, and applications of these micro-
needles have been extensively summarized and discussed in
several good review articles.1,2,12–14 Among the different
types of the microneedles, dissolving microneedles which
are made of fast water-soluble polymers have received
particular attention as they do not result in any hazardous
sharp waste after application.15–19 They can normally dis-
solve within minutes and release the loaded biotherapeutics
as the matrix dissolves.18,20–22 In the past two decades,
dissolving microneedles have been fabricated by using vari-
ous types of biocompatible and water-soluble matrix, in-
cluding hyaluronic acid (HA),23,24 polyvinylpyrrolidone
(PVP),25,26 sucrose,27,28 gelatin,29 etc. Microneedles made
of these polymers have shown strong mechanical strength
for skin piercing and excellent biocompatibility and safety for
delivery of substances from small-molecule chemical drugs
to biomacromolecule protein therapeutics.30–34 However,
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Abstract Microneedles have been extensively investigated for intradermal delivery of drugs and
vaccines due to advantages including high skin delivery efficiency, improved patient
compliance, and potential for self-administration. However, traditional microneedles
cannot regulate the release kinetics of payloads, limiting therapeutic utility of the
biotherapeutics. Recently, several types of microneedles with sustained release
properties, including slow-dissolving microneedles made of hydrophilic polymers,
degradable microneedles made of hydrophobic polymers, and bioresponsive micro-
needles made of bioresponsive polymers, have been developed and investigated for
intradermal delivery of the biotherapeutics, aiming for improving their therapeutic
potency, reducing side effects and administration frequency, and further improving
patient compliance. In this review, we introduced different types of microneedles that
have been designed for sustained release of the payloads, summarized various
applications of these microneedles, and discussed the future prospects of this
technology.
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most of the investigated microneedles cannot regulate the
release kinetics of the encapsulated cargos due to the instant
dissolution properties of the matrix. As a result, the micro-
needle-delivered drugs may have a short half-life and unor-
dered distribution, which may limit their potency and cause
unwanted side effects.35

To exploit the potential of polymeric microneedles for
modulation of release properties and further improve thera-
peutic potency of the payloads, researchers started to design
and investigate microneedles with sustained release proper-
ties.36 Instead of rapidly dissolving and releasing the drugs
after insertion, sustained release microneedles can keep the
drug inside the matrix and release the payloads in a certain
manner based on the dissolution or degradation properties
of the polymer matrix.36,37 The hypothesis is that the sus-
tained release of drugs and vaccines from the microneedles
could help to improve therapeutic efficacy, decrease side
effects, and reduce administration frequency. To this end,
several types of microneedles have been developed, includ-
ing slow-dissolving microneedles made of hydrophilic poly-
mers, degradable microneedles made of hydrophobic
polymers, and bioresponsive microneedles made of biores-
ponsive polymers.37 In the case of slow-dissolving micro-
needles, the release rate of the payloads is determined by the
dissolution of the polymer after the insertion into skin. In
degradable microneedles, the drug is delivered through
passive diffusion or degradation of the matrix. In biores-
ponsivemicroneedles, bioresponsive polymers andmicro- or
nanoparticles which are sensitive to physiological signal are
utilized for drug delivery in a bioresponsive manner37

(►Table 1).
Although the research of these sustained release micro-

needles is in a relatively early stage, they have been used for
delivery of various types of drugs and vaccines, including
small-molecule chemical drugs, antibodies, protein thera-
peutics, and vaccines. These microneedles have been inves-
tigated for immune modulation, cancer therapy, diabetes
treatment, etc. The results have shown that the sustained
release of drug from the microneedles can improve thera-
peutic potency of the cargos and sustained release micro-
needles have potential to be used as a patient-friendly
substitute for conventional sustained release methods. In
this review, we introduced the representative types of the
microneedles that have been designed for sustained release
of drugs and vaccines, summarized different applications of
these microneedles, and discussed the future perspective of
this technology.

Representative Microneedle Types with
Sustained Release Properties

Slow-Dissolving Microneedles Made of Hydrophilic
Polymers
To extend the release period of drugs of dissolving micro-
needles, hydrophilic polymerswith a slow dissolution rate in
aqueous media were used. The polymers that have been
studied for this type of microneedles are chitosan and
polyvinyl alcohol (PVA;►Table 2).38–40When selecting these
polymers, the parameters that need to be carefully consid-
ered are water solubility, mechanical strength, and compati-
bility to drugs and vaccines. Although several new methods,
including drawing lithography,41 soft lithography,42 and
droplet-born air blowing,43 have been developed for fabrica-
tion of polymeric microneedles, the mostly used method for
preparing sustained release microneedles is the aqueous-
based micromolding method.2,12,32

To fabricate slow-dissolving microneedles, one challenge
is to dissolve the polymer in aqueous solution and obtain a
relatively high concentration, which is needed for micro-
molding. Researchers have utilized high temperature and
acidic pH for helping in dissolving the polymers with a high
concentration. For example, to prepare a matrix formulation
of PVA/PVP-based microneedles, Leonard et al first dissolved
PVA in water to obtain a concentration of 0.67 g/mL by
heating at 90°C.40 After adding PVP, the polymer mixtures
were further incubated at 60°C for 5 to 6hours before use. In
another study, chitosan was used to prepare a microneedle
patch for sustained delivery of a model antigen ovalbumin
(OVA). A 2% chitosan solutionwasfirst prepared by adding 2%
(w/v) acetic acid. Next, excess acetic acid was removed by
dialysis and excess water was removed by evaporation to
obtain a 10% chitosan gel. The prepared chitosan micro-
needles successfully penetrated the skin, leaving the chito-
san tip embedded for sustained release of OVA for over
14 days (►Fig. 1).38 These high temperature and acidic
conditions, however, may impact the structure and func-
tionality of the loaded biotherapeutics, especially for protein
and gene drugs which are sensitive to environmental
conditions.44–47

Another strategy that can enable dissolving microneedles
to release the payloads in a controlled manner is to combine
nano- and microparticle technologies.48,49 Vora et al fabri-
cated PVP-basedmicroneedles loadedwith amixture of poly
(lactic-co-glycolic acid) (PLGA) nanoparticles and micropar-
ticles.48 The developed system showed good mechanical and

Table 1 Different types of sustained release microneedles and their drug release mechanism

Microneedle type Polymer matrix Drug release mechanism

Slow-dissolving microneedles made of
hydrophilic polymers

Slowly water-dissolving polymers Released together with the dissolution
of matrix

Degradable microneedles made of
hydrophobic polymers

Non-water soluble and degradable
polymers

Released through passive diffusion or
degradation of polymer

Bioresponsive microneedles made of
bioresponsive polymers

Biodegradable and bioresponsive
polymers

Released in responding to physiological
signals
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insertion profiles, and can continuously release amodel drug
for over 5 days. In another study, Ke et al developed PVP
based dissolving microneedles loaded with pH-sensitive
PLGA microparticles for multidrug release in sequence. In
the first step, the microneedles quickly dissolved and re-
leased the free drug as well as another drug encapsulated in
PLGA microparticles. In the subsequent step, the delivered
microparticles disassembled due to the acidic pH of the skin
and released the second drug. This system has potential for
use of some clinical applications in which drugs need to be
administered in sequence.49 However, in the studies men-
tioned above, the authors did not investigate the application
of the developed microneedles in real disease models. Addi-
tionally, the relatively low loading capacity of the polymeric
nanoparticles may limit the overall drug loading capacity of
the microneedles.

Degradable Microneedles Made of Hydrophobic
Polymers
Except utilizing dissolving microneedles for sustained drug
release, researchers also designed degradable microneedles
by using nonsoluble and hydrophobic polymers for sustained
release of drugs. The polymers that have been used are
polylactic acid and PLGA, which have good biocompatibility
and biodegradability (►Table 2).40,50–54 Degradable micro-
needles made of these polymers have shown sufficient
mechanical strength for skin insertion and a slow degrada-
tion rate for sustained release of the payloads. Hydrophobic
drugs can be directly dissolved and mixed with the polymer
in organic solution for drug loading during themicromolding
process.51 In most of the cases, the polymers need to be
melted at a high temperature above 135 °C in order to fill the
microcavities of the molds.50,53 The high temperature and

Table 2 Representative microneedle types for sustained delivery of biotherapeutics

Microneedle type Polymer matrix Delivered biotherapeutics Ref.

Slow-dissolving microneedles made
of hydrophilic polymers

Chitosan OVA 38

Chitosan Calcein, BSA 39

PVA Sulforhodamine B, inactivated
influenza virus

40

PVP, PLGA Vitamin D3 48

PVA, PLGA Alexa 488, Cy5 49

Degradable microneedles made of
hydrophobic polymers

PLGA Calcein, BSA 50

PLGA Sulforhodamine B, inactivated
influenza virus

40

PLA Methotrexate 51

PLGA Rhodamine 52

PLGA OVA 53

PLGA, PLA Levonorgestrel 54

PLGA OVA 62

Crystallized silk
fibroin

OVA 56

Crosslinked MeHA Anti-PD-1 57

Genipin-crosslinked
gelatin

Insulin 58

Crystallized silk
fibroin

Antibiotic 60

PS-PAA Insulin 113

Crosslinked MeHA Tumor lysate 61

Crosslinked MeHA Insulin 63

Crosslinked MeHA Insulin 64

Crosslinked MeHA Checkpoint inhibitors 65

Bioresponsive microneedles made of
bioresponsive polymers

Crosslinked MeHA Insulin 79

Crosslinked PVA Insulin 66

Crosslinked MeHA Insulin 80

Crosslinked alginate Exendin-4 67

Abbreviations: BSA, bovine serum albumin; OVA, ovalbumin; PLA, polylactic acid; PLGA, poly(lactic-co-glycolic) acid; PVA, polyvinyl alcohol; PVP,
polyvinylpyrrolidone.
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organic solvent used in this method could cause the loss of
drug efficacy.55 The loading of hydrophilic drugs can be a
challenge due to the immiscible nature of the drug and
microneedle matrix. In some studies, hydrophilic drugs
were first encapsulated into nano- or microparticles, and
the particles were incorporated into the microneedles in the
next step.50,52

Preparing degradablemicroneedles bypostprocessing is an
interesting alternative method that has been developed re-
cently for overcoming the drawbacks mentioned above.56–65

This approach combines the advantages of easiness for drug
loading of dissolving microneedles during the preparation
process and sustained release properties of biodegradable
polymers. To prepare the microneedles, chemically modified
water-solublepolymerswerefirst used for the loadingofdrugs
and vaccines. Aftermolding, the fabricatedmicroneedleswere
crosslinked or crystallized by chemical or physical treatments
including UV exposure, organic solvent treatment, etc. After
the postprocessing, the polymers became non-water soluble
and thereby could slowly release the drug during degradation.
Studies have shown that the crosslinked or crystallizedmicro-
needles can significantly improve thestiffness ofmicroneedles
and extend the release timeof the payloads. Thematrices used
for this type of microneedles include crosslinked methacry-
lated hyaluronic acid (MeHA),57,61,63–65 crosslinked PVA,66

genipin-crosslinked gelatin,58 crystallized silk fibroin,59,60

and crosslinked alginate.67

Researchers from Gu et al’s group fabricated crosslinked
MeHA microneedles and applied them for the delivery of
checkpoint inhibitors, tumor lysates, and insulin
(►Fig. 2).57,61,63–65 HA was first modified with a methya-
crylamide group and filled into micromolds together with
methylenebisacrylamide and a photoinitiator for micronee-
dle fabrication. After UV exposure, the polymers form a
water-insoluble network entrapping the drug, allowing for
sustained release of drug for over several days.57,61,65 The

methyacrylation rate of HA and the exposure time toUV light
have been shown to influence the mechanical strength of
microneedles and release properties of the payloads. Simi-
larly, they modified PVA with the methyacrylamide group
and fabricated crosslinked PVA microneedles for sustained
release of payloads.66

Silk fibroin can be used formicroneedle preparation due to
their excellent mechanical properties, biocompatibility, and
biodegradability.68,69 However, microneedles made of silk
fibroin without any processing cannot control the release
rate of the payloads.70 Recent studies showed that the degra-
dation rateof silkfibroin and thediffusion rateof thepayloads
can be controlled by postprocessing the microneedles with
methanol or high humidity exposure, by changing the sec-
ondary structure of the silk fibroin.71–73 Tsioris et al modified
silk fibroin with water vapor annealing for modulation of the
degradation properties of silk fibroin. They showed that the
processed silk fibroin had higher content of β sheet secondary
structure, and the drug release ratewas decreased by 5.6-fold
compared with nonmodified microneedles.60 Jiyong et al.
treated silk-fibroin-based microneedles with methanol, and
found that the exposure time to methanol can be used to
control the drug release rate.59

Bioresponsive Microneedles Made of Bioresponsive
Polymers
The slow-dissolving microneedles and degradable micronee-
dles can deliver the loaded drugs and vaccines in a sustained
manner, which is predetermined by the dissolution and bio-
degradation rate of the polymers. Bioresponsivemicroneedles,
in contrast, can respond to the physiological signal and release
the payloads smartly according to the change of the physiolog-
ical signals.74,75 This character of the microneedles can be
achieved via the loading of drugs in bioresponsive polymers
or secondary encapsulation of drugs in physiological signal-
sensitive micro- or nanoparticles.76–78 The microneedles keep

Fig. 1 Chitosan-based microneedles for sustained release of OVA. (A) Schematic illustration of the fabrication process. (B) Bright-field images of
the microneedles. (C–E) Confocal images of the insertion sites after 1 day (C), 1 week (D), and 2 weeks (E). OVA, ovalbumin. (Adapted with
permission from Chen et al 201338.)
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the drug in the matrix, while the particles can respond to the
physiological signals and release the drug in a sustained
manner.

The bioresponsivemicroneedles that have been reported in
the literature are mainly glucose-responsive ones
(►Table 2).66,79,80 In this system, the glucose oxidase is an
essential component which is normally encapsulated inside of
nanoparticles embedded in the microneedle matrix. The
glucose oxidase can catalyze the oxidation of high concentra-
tion of blood glucose and produce H2O2, which in turn
stimulates the release of insulin fromHþ- orhypoxia-sensitive
nanoparticles. This processfinally can lead to a closed loop and
regulate the insulin delivery in a bioresponsive manner. For
example, researchers fabricated bioresponsive microneedles
loaded with pH-sensitive and insulin-loaded nanoparticles.
The H2O2 produced from the oxidation of glucose by glucose

oxidase successfully triggered the release of insulin from the
nanoparticles.66,80 In these two studies, the outer layer of
microneedles was loaded with a catalyzing enzyme for scav-
enging excess H2O2 to protect normal tissues from injury
caused by oxidative stress.66 Similarly, Chen et al fabricated
crosslinked alginate microneedles loaded with dual-mineral-
ized nanoparticles for encapsulation of exendin-4 and glucose
oxidase separately. The Hþ produced by enzyme oxidation of
blood glucose stimulated the disassembling of mineralized
nanoparticles, leading to bioresponsive release of insulin.79

Application of Microneedles with Sustained
Delivery Properties

Fast dissolving microneedles have the limitation that the drug
release patterns cannot be precisely controlled. Sustained

Fig. 2 Crosslinked MeHA microneedles used for delivery of checkpoint inhibitors and tumor lysates. (A) Schematic of anti-PD-1 delivery by
crosslinked MeHAmicroneedles. (B) Scanning electron microscopy (SEM) image of anti-PD-1-loaded microneedles. (C) In vitro release of anti-PD-
1 from crosslinked MeHA microneedles. (D) Schematic of sustained delivery of tumor lysates by crosslinked MeHA microneedles. (E) SEM image
of tumor-lysate-loaded microneedles. (F) In vitro release of tumor lysates from the microneedles. MeHA, methacrylated hyaluronic acid.
(Adapted with permission from Wang et al 201657 and Ye et al 201761.)
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release microneedles open up new therapeutic utility for
applications which require constant delivery of the drugs.
The microneedles with sustained delivery properties can
potentially be used to improve therapeutic potency, decrease
administration frequency, and reduce side effects. The appli-
cations that have been investigated so far are immune modu-
lation, cancer therapy, and diabetes treatment.

Immune Modulation
The skin harbors abundance of antigen-presenting cells, in-
cluding Langerhans cells in theepidermis anddendritic cells in
the dermis, making the skin an important site for vaccina-
tion.81–85 It has been shown that intradermal vaccination can
result in stronger immune responses as compared with sub-
cutaneous and intramuscular vaccinations.86–89 Furthermore,
the vaccination using microneedles can avoid pain sensation
and significantly reduce the stress of recipients as compared
with injection by traditional hypodermic needles, which is
especially important for vaccination of young children.90,91

Sustained release microneedles can be used to further
improve the immunogenicity of the loaded antigen. During
natural infectionwithmicroorganism, the pathogens replicate
typicallyover severalweeksand therefore continuouslyexpose
the antigen to the immune system. As a result, the induced
immune response is normally strong.92,93 Previous studies
have also shown that the sustained delivery of antigens and
adjuvants from nanoparticles can potentially increase the
immuneresponses.94–97Microneedleswithasustained release
behavior can be used as a painless and patient-friendly alter-
native mimicking this natural infection for improving the
immunogenicity of antigens.53,56 One study showed that by
using silk-fibroin-fabricated microneedles for sustained deliv-
ery of loaded OVA, the elicited antibody titers was 10-fold
higher than that elicited by traditional hypodermic-needle-
injected antigens (►Fig. 3).56The samegroup also investigated
PLGA-basedmicroneedles for intradermal delivery of OVA and
foundthat thesustaineddeliveryofOVAsignificantly increased
T-cell responses although did not improve antibody titers.53

Another disadvantage of traditional hypodermic-needle-
mediated immunization is that normally multiple injections
are needed to stimulate robust immune responses.98 As a
result, the recipientsmay fail to follow the entire program for
successful immunization. On the other hand, these disad-
vantages bring several burdens for caregivers, especially
during large vaccination campaigns. The use of sustained
releasemicroneedles for vaccination thereby has potential to
significantly improve the vaccine coverage and reduce the
work of caregivers.99 To the best of the authors’ knowledge,
however, there are no studies reported to date investigating
the potential of sustained release microneedles for reducing
immunization frequency.

Cancer
Recently, cancer treatment with immune therapy by har-
nessing the immune system has achieved great progress,
including immunotherapy by using checkpoint inhibitors
and cancer vaccines. These strategies aim at stimulating
the immune system or remodeling the tumor microenviron-

ment, and finally eliciting potent CD8þ T-cell responses for
clearance of cancerous cells.100–102 Immunotherapy strate-
gies by using anti-PD-1 and anti-CTLA-4 have achieved
encouraging results in clinical trials and are now revolution-
izing cancer treatments.103 However, the response rate is
relatively low and cancer-type-dependent.104,105 Research-
ers have tried to combine different immune reagents and
treatment strategies to achieve synergetic antitumor effica-
cy. Microneedles with sustained release properties provide a
good platform for this purpose for remodeling immune
microenvironments and stimulating the immune system.

Wang et al developed a self-degradable microneedle patch
composed of anti-PD-1 and glucose oxidase that are loaded in
pH-sensitive dextran nanoparticles. After insertion into the
skin, the pHwas decreased due to the oxidation of glucose and
production of Hþ, which triggered the degradation of the
nanoparticles for sustained release of anti-PD-1. This self-
degradablemicroneedles inducedstronger immuneresponses
and antitumor potency compared with microneedles without
self-degradation property.57 Ye et al loaded B16F10 tumor
lysates and photothermal reagents in crosslinked MeHA
microneedles. The results showed that the developed micro-
needles couldcontinuously releaseloaded tumor lysatesunder
exposure to laser light. This combined strategy elicited potent
antitumor effects and significantly increased the survival rate
of tumor-bearing mice.61 They also developed crosslinked
MeHA microneedles for co-loading of anti-PD-1 and IDO
(indoleamine 2,3-dioxygenase) inhibitor 1-MT. The sustained
release of these two inhibitors successfully enhanced the
retention of the checkpoint inhibitors in the tumor microen-
vironment. This system finally demonstrated a synergistic
treatment effect against B16F10 mouse melanoma.65

Diabetes
For diabetes, subcutaneous injection and pump-mediated
infusion of insulin are the main treatment strategies.106 These
deliverystrategies,however, couldcausecomplications includ-
ing acute pain and inflammation due to frequent administra-
tions for maintaining an appropriate blood concentration of
insulin. Under this context, researchers have investigated the
microneedle system for noninvasive and convenient intrader-
mal delivery of insulin.38,107–109 However, there are two
limitations of these microneedle systems. First, the investigat-
edmicroneedle systems cannot control the delivery kinetics of
insulin and therefore have a short lasting time for glucose
control. Second, the delivered dose of insulin is predetermined
and there is a risk that the administrated insulin may exceed
the amount that is needed, causinghypoglycemiawhich canbe
severe and lethal.110–112 To extend the release time of insulin
from the microneedle system, researchers utilized biodegrad-
able microneedles for sustained release of insulin.58,113 These
systems have shown to be able to extend the release of insulin
and maintain the glucose level in a stable range within 10 to
12hours. For instance, Chen et al fabricated genipin-cross-
linked gelatin microneedles for sustained delivery of insulin.
They observed that the crosslinking degree of gelatin could
affect themechanical strength and releaseprofile of themicro-
needles. The microneedles with a higher crosslinking degree
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could more prolong the release of insulin and improve the
therapeutic effectiveness of insulin as compared with tradi-
tional subcutaneous injection.58 Seong et al fabricated micro-
needles with a bullet shape made of swellable polystyrene-
block-poly(acrylic acid) (PS-PAA) for intradermal delivery of
insulin. They showed that after insertingmicroneedles into the
skin, the loaded insulin could be delivered through passive
diffusion due to the swelling of the tip matrix. The in vitro
release study showed that the microneedles had released
around 60% of the payloads for over 12hours. In a rat diabetes
animal model, the microneedle administration had led to a
gradual decrease of blood glucose levels for over 8hours.113

One riskof traditional insulin injection is that excess insulin
may cause hypoglycemia. Therefore, a new “smart” system for
insulin delivery is urgently needed that can deliver desirable

amounts of insulin when the blood glucose level is high while
maintaining the basal release rate of insulin when the blood
glucose level is normal. To this end, researchers developed
bioresponsive microneedles that can precisely release the
loaded insulin in response to the blood glucose level, as
discussed in the section of “bioresponsive microneedles.”
This systemcouldhelp create a closed loop for insulin delivery,
avoiding the risk of excessive delivery of the drug. Zhang et al
developed crosslinked MeHA bioresponsive microneedles for
entrapmentof insulin andglucose oxidase. The results showed
that the developed system can effectively regulate the blood
glucose level within a normal range for around 12hours after
administration of one microneedle patch on a diabetic mice
model (►Fig. 4).66,80Wang et al also investigated themultiple
microneedle administration andmonitored the blood glucose

Fig. 3 Crystallized silk fibroin microneedles used for modulation of immune response. (A) Schematic of fabrication of microneedles. (B) Optical
images of OVA-loaded microneedles. (C) Confocal images of OVA-loaded microneedles. (D) SEM image of a single microneedle. (E) In vitro
release of OVA from the microneedles. (F) Antibody immune responses after immunization with the sustained release microneedles in mice.
OVA, ovalbumin; SEM, scanning electron microscopy. (Adapted with permission from DeMuth et al 201456.)
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level for 40hours. They found that within this time period, the
blood glucose level was regulated to a narrow range between
100 and 250mg/dL without any hypoglycemia observed.66

Other Applications
The sustained release microneedles were also investigated
for other applications, including ocular disease,51 contracep-
tion,54 and antibacterial.60 In these studies, themicroneedles
were used to maintain and achieve sufficient therapeutical
levels of the payloads with less administration frequency,
aiming for better patient acceptance, improved safety, and
stronger therapeutic efficacy.

Conclusion and Perspectives

Sustained release microneedles have shown superior delivery
efficacy as comparedwith fast-dissolvingmicroneedles. How-
ever, there are still several aspects that need to be further
investigated or optimized. First, the small drug loading
capacity of the microneedles due to their small size and

volume is a limiting factor for their clinical translation.
Researchers have utilized centrifugation, repeated filling,
and evaporation for enrichment of drug solution or drug-
loaded nanoparticles in microcavities.66,67 Other ways for
increasing the drug-loading capacity could be enlarging the
size of the microneedle patch or developing new polymers
with higher solubility or packing capacity of drug molecules.
Second, the strategies which have been used for preparing
sustained release microneedles often include intense
physical/chemical procedures that may impact the structure
or functionality of biotherapeutics, such as high temperature,
use of organic solvent or UV light. New methods for minimiz-
ing the use of these intense conditions are still needed. Lastly,
the effect of different release kinetics of the payloads from
microneedle matrix on drug potency has not been systemi-
cally studied. Several studies have shown that by simply
adjusting the components of the microneedle matrix or
adjusting chemical modification level of the polymers, the
release kinetics can be regulated and optimized. More in-
detailed mechanism and comparison studies are needed.

Fig. 4 Crosslinked PVA-based bioresponsive microneedles for regulation of blood glucose level. (A) Schematic of fabrication of microneedles.
(B) The release of insulin from crosslinked PVA gel at different pH values. (C) The release of insulin from crosslinked PVA gel at different glucose
concentrations. (D) The release of insulin with different concentrations of glucose. (E) Self-regulated release of insulin in response to glucose
level. (F) The blood glucose level for over 14 hours after application of one microneedle patch on diabetes mice model. (G) The blood glucose
level for over 40 hours after application of multiple microneedle patches on diabetes mice model. PVA, polyvinyl alcohol. (Adapted with
permission from Ye et al 201666.)
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Currently, there are dozens of clinical trial reports on
investigating microneedle systems for treating diabetes,
psoriatic plaques, topical anesthesia, and influenza vaccina-
tion.37,114,115 In most of these studies, commercially avail-
able hollow-microneedle systems were used while the
clinical studies of polymericmicroneedles are limited.116–120

Twophase I studies have investigated the piercing ability and
safety of HA-based dissolving microneedles. The results
showed that with the assistance of an applicator, the micro-
needles can be reproducibly penetrated into the skinwith no
obvious side effect.121,122 In another phase I clinical study,
the safety and immunogenicity of HA-based dissolvable
microneedles for delivery of H1N1, H3N2, and B seasonal
influenza virus vaccine strains have been studied. The results
showed that the designedmicroneedle patch is tolerable and
can induce robust immune response.5 These studies revealed
the potential for clinical translation of polymer micronee-
dles. However, as far as we know, there are no clinical studies
reported to date on the sustained release microneedles.

In conclusion, themicroneedleswith sustained releaseprop-
erties ofdrugsor vaccineshavebeen successfully developedand
applied for immunemodulation and disease treatment in mice
models. Many of them have shown superior potency than
traditional fast-dissolving microneedles or free drug/vaccine
formulations, revealing the potential of this strategy to be used
as a patient-friendly replacement for conventional sustained
release methods. Future success of this technology and clinical
translationwill relyon the combined efforts fromresearchers of
engineering, pharmaceuticals, and immunology.
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