Semin Musculoskelet Radiol 2020; 24(02): 175-180
DOI: 10.1055/s-0040-1701629
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Peripheral Nerves: Not Only Cross-sectional Area in the Era of Radiomics

1   Ospedale Policlinico San Martino, Genoa, Italy
2   Department of Health Sciences, University of Genoa, Genoa, Italy
,
Raquel Prada González
3   Servicio de Radiología, POVISA Hospital, Vigo, Pontevedra, Spain
,
Federica Rossi
2   Department of Health Sciences, University of Genoa, Genoa, Italy
,
Bianca Bignotti
1   Ospedale Policlinico San Martino, Genoa, Italy
2   Department of Health Sciences, University of Genoa, Genoa, Italy
,
Carlo Martinoli
1   Ospedale Policlinico San Martino, Genoa, Italy
2   Department of Health Sciences, University of Genoa, Genoa, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
21 May 2020 (online)

Abstract

The peripheral nervous system is increasingly being investigated using medical imaging as a complement or in association with electrodiagnostics tests. The application of imaging techniques, such as ultrasound (US) and magnetic resonance imaging (MRI), allows detailed visualization of the peripheral nervous system. According to the European Society of Musculoskeletal Radiology, the use of US for nerve evaluation is strongly encouraged. In addition, the role of US is further enhanced by the wide application of US-guided techniques to diagnose or to treat peripheral nerve disorders.

Standard evaluation of peripheral nerves on US usually relies on cross-sectional area evaluation with different cutoff values in the osteofibrous tunnels and outside them. In several anatomical areas, side-to-side comparison is highly recommended because it helps distinguish subtle variations by using the unaffected limb as an internal control.

US is widely used to perform US-guided interventional procedures on peripheral nerves. The recent development of radiomics and machine and deep learning applied to peripheral nerves may reveal new insights beyond the capabilities of the human eye. Radiomics may have a role in expanding the diagnostic capabilities of US and MRI in the study of peripheral nerve pathology, especially when the cross-sectional area is not markedly increased.

 
  • References

  • 1 Möller I, Miguel M, Bong DA, Zaottini F, Martinoli C. The peripheral nerves: update on ultrasound and magnetic resonance imaging. Clin Exp Rheumatol 2018; 36 (05) (Suppl. 114) 145-158
  • 2 Zaidman CM, Seelig MJ, Baker JC, Mackinnon SE, Pestronk A. Detection of peripheral nerve pathology: comparison of ultrasound and MRI. Neurology 2013; 80 (18) 1634-1640
  • 3 Zhu J, Padua L, Hobson-Webb LD. Ultrasound as the first choice for peripheral nerve imaging?. Neurology 2013; 81 (18) 1644
  • 4 Tagliafico AS. Peripheral nerve imaging: not only cross-sectional area. World J Radiol 2016; 8 (08) 726-728
  • 5 Tagliafico AS, Bignotti B, Martinoli C. Elbow US: anatomy, variants, and scanning technique. Radiology 2015; 275 (03) 636-650
  • 6 Vanhoenacker FM, Desimpel J, Mespreuve M, Tagliafico A. Accessory muscles of the extremities. Semin Musculoskelet Radiol 2018; 22 (03) 275-285
  • 7 Tagliafico A, Bignotti B, Rossi F, Rubino M, Civani A, Martinoli C. Clinical contribution of wrist and hand sonography: pilot study. J Ultrasound Med 2019; 38 (01) 141-148
  • 8 Tagliafico A, Bignotti B. New parameters for evaluating peripheral nerve disorders on sonography and magnetic resonance imaging. J Ultrasound Med 2015; 34 (08) 1523-1523
  • 9 Sconfienza LM, Albano D, Allen G. , et al. Clinical indications for musculoskeletal ultrasound updated in 2017 by European Society of Musculoskeletal Radiology (ESSR) consensus. Eur Radiol 2018; 28 (12) 5338-5351
  • 10 Martinoli C, Tagliafico A, Bianchi S. , et al. Peripheral nerve abnormalities. Ultrasound Clin 2007; 2 (04) 655-667
  • 11 Hobson-Webb LD, Padua L. Median nerve ultrasonography in carpal tunnel syndrome: findings from two laboratories. Muscle Nerve 2009; 40 (01) 94-97
  • 12 Hobson-Webb LD, Padua L. Ultrasound of focal neuropathies. J Clin Neurophysiol 2016; 33 (02) 94-102
  • 13 Gasparotti R, Padua L, Briani C, Lauria G. New technologies for the assessment of neuropathies. Nat Rev Neurol 2017; 13 (04) 203-216
  • 14 Rossi F, Romano N, Muda A, Martinoli C, Tagliafico A. Wrist and hand ultrasound: reliability of side-to-side comparisons of very small (<2-mm) clinically relevant anatomic structures. J Ultrasound Med 2018; 37 (12) 2785-2795
  • 15 Tagliafico A, Cadoni A, Fisci E, Bignotti B, Padua L, Martinoli C. Reliability of side-to-side ultrasound cross-sectional area measurements of lower extremity nerves in healthy subjects. Muscle Nerve 2012; 46 (05) 717-722
  • 16 Tagliafico A, Martinoli C. Reliability of side-to-side sonographic cross-sectional area measurements of upper extremity nerves in healthy volunteers. J Ultrasound Med 2013; 32 (03) 457-462
  • 17 Martinoli C, Garello I, Marchetti A. , et al. Hip ultrasound. Eur J Radiol 2012; 81 (12) 3824-3831
  • 18 Noebauer-Huhmann IM, Weber M-A, Lalam RK. , et al. Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging. Semin Musculoskelet Radiol 2015; 19 (05) 475-482
  • 19 Tagliafico A, Bignotti B, Rossi F, Sconfienza LM, Messina C, Martinoli C. Ultrasound of the hip joint, soft tissues, and nerves. Semin Musculoskelet Radiol 2017; 21 (05) 582-588
  • 20 Tagliafico A, Bignotti B, Martinoli C. Update on ultrasound-guided interventional procedures on peripheral nerves. Semin Musculoskelet Radiol 2016; 20 (05) 453-460
  • 21 Tagliafico A, Bodner G, Rosenberg I. , et al. Peripheral nerves: ultrasound-guided interventional procedures. Semin Musculoskelet Radiol 2010; 14 (05) 559-566
  • 22 Klauser AS, Abd Ellah MMH, Halpern EJ. , et al. Meralgia paraesthetica: Ultrasound-guided injection at multiple levels with 12-month follow-up. Eur Radiol 2016; 26 (03) 764-770
  • 23 Tagliafico A, Serafini G, Sconfienza LM. , et al. Ultrasound-guided viscosupplementation of subacromial space in elderly patients with cuff tear arthropathy using a high weight hyaluronic acid: prospective open-label non-randomized trial. Eur Radiol 2011; 21 (01) 182-187
  • 24 Narouze SN. , ed. Atlas of Ultrasound-guided Procedures in Interventional Pain Management. New York, NY: Springer; 2011
  • 25 Deckers R, Moonen CTW. Ultrasound triggered, image guided, local drug delivery. J Control Release 2010; 148 (01) 25-33
  • 26 Chan VWS, Perlas A, Rawson R, Odukoya O. Ultrasound-guided supraclavicular brachial plexus block. Anesth Analg 2003; 97 (05) 1514-1517
  • 27 Barr L, Hatch N, Roque PJ, Wu TS. Basic ultrasound-guided procedures. Crit Care Clin 2014; 30 (02) 275-304 , vi
  • 28 Hanumanthaiah D, Vaidiyanathan S, Garstka M, Szucs S, Iohom G. Ultrasound guided supraclavicular block. Med Ultrason 2013; 15 (03) 224-229
  • 29 Karmakar MK, Kwok WH. Ultrasound-guided regional anesthesia. In: Cote C, Lerman J, Anderson B. , eds. A Practice of Anesthesia for Infants and Children. 6th ed. Philadelphia, PA: Elsevier; 2018
  • 30 Houssami N, Lång K, Bernardi D, Tagliafico A, Zackrisson S, Skaane P. Digital breast tomosynthesis (3D-mammography) screening: a pictorial review of screen-detected cancers and false recalls attributed to tomosynthesis in prospective screening trials. Breast 2016; 26: 119-134
  • 31 Tagliafico A, Tagliafico G, Martinoli C. Nerve density: a new parameter to evaluate peripheral nerve pathology on ultrasound. Preliminary study. Ultrasound Med Biol 2010; 36 (10) 1588-1593
  • 32 Jeon T, Fung MM, Koch KM, Tan ET, Sneag DB. Peripheral nerve diffusion tensor imaging: overview, pitfalls, and future directions. J Magn Reson Imaging 2018; 47 (05) 1171-1189
  • 33 Soldatos T, Fisher S, Karri S, Ramzi A, Sharma R, Chhabra A. Advanced MR imaging of peripheral nerve sheath tumors including diffusion imaging. Semin Musculoskelet Radiol 2015; 19 (02) 179-190
  • 34 Martín Noguerol T, Barousse R, Gómez Cabrera M, Socolovsky M, Bencardino JT, Luna A. Functional MR neurography in evaluation of peripheral nerve trauma and postsurgical assessment. Radiographics 2019; 39 (02) 427-446
  • 35 Padua L, Coraci D, Erra C. , et al. Carpal tunnel syndrome: clinical features, diagnosis, and management. Lancet Neurol 2016; 15 (12) 1273-1284
  • 36 Martín Noguerol T, Barousse R, Socolovsky M, Luna A. Quantitative magnetic resonance (MR) neurography for evaluation of peripheral nerves and plexus injuries. Quant Imaging Med Surg 2017; 7 (04) 398-421
  • 37 Martín Noguerol T, Barousse R, Gómez Cabrera M, Socolovsky M, Bencardino JT, Luna A. Functional MR neurography in evaluation of peripheral nerve trauma and postsurgical assessment. Radiographics 2019; 39 (02) 427-446
  • 38 Algohary A, Viswanath S, Shiradkar R. , et al. Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: preliminary findings. J Magn Reson Imaging 2018; 48: 818-828
  • 39 Chitalia RD, Kontos D. Role of texture analysis in breast MRI as a cancer biomarker: A review. J Magn Reson Imaging 2019; 49 (04) 927-938
  • 40 Bi WL, Hosny A, Schabath MB. , et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin 2019; 69 (02) 127-157
  • 41 Huang Y, Liu Z, He L. , et al. Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology 2016; 281 (03) 947-957
  • 42 Lao J, Chen Y, Li Z-C. , et al. A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 2017; 7 (01) 10353
  • 43 Zhou Y, He L, Huang Y. , et al. CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma. Abdom Radiol (NY) 2017; 42 (06) 1695-1704
  • 44 Lambin P, Rios-Velazquez E, Leijenaar R. , et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012; 48 (04) 441-446
  • 45 Zhang B, He X, Ouyang F. , et al. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett 2017; 403: 21-27
  • 46 Parekh VS, Jacobs MA. Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI. NPJ Breast Cancer 2017; 3: 43
  • 47 Crivelli P, Ledda RE, Parascandolo N, Fara A, Soro D, Conti M. A new challenge for radiologists: radiomics in breast cancer. BioMed Res Int 2018; 2018: 6120703
  • 48 Corino VDA, Montin E, Messina A. , et al. Radiomic analysis of soft tissues sarcomas can distinguish intermediate from high-grade lesions. J Magn Reson Imaging 2018; 47 (03) 829-840
  • 49 Han L, Zhu Y, Liu Z. , et al. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer. Eur Radiol 2019; 29 (07) 3820-3829
  • 50 Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS. Rapid review: radiomics and breast cancer. Breast Cancer Res Treat 2018; 169 (02) 217-229
  • 51 Kumar V, Gu Y, Basu S. , et al. Radiomics: the process and the challenges. Magn Reson Imaging 2012; 30 (09) 1234-1248
  • 52 Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL. Machine learning methods for quantitative radiomic biomarkers. Sci Rep 2015; 5: 13087
  • 53 Ma W, Ji Y, Qi L, Guo X, Jian X, Liu P. Breast cancer Ki67 expression prediction by DCE-MRI radiomics features. Clin Radiol 2018; 73 (10) 909.e1-909.e5
  • 54 Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 2015; 60 (14) 5471-5496
  • 55 Tagliafico A, Rossi F, Valdora F. , et al. Feasibility of imaging phenotyping (radiomics) on nuclear MRI of major lower limb nerves. G Ital Radiol Med 2019; 6: 25-30
  • 56 Bignotti B, Zaottini F, Airaldi S, Martinoli C, Tagliafico A. Extraneural findings during peripheral nerve ultrasound: prevalence and further assessment. Muscle Nerve 2018; 57 (01) 65-69