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Summary
Objectives: Any attempt to introduce new data types in the 
entangled hospital infrastructure should help to unravel old 
knots without tangling new ones. Health data from a wide range 
of sources has become increasingly available. We witness an 
insatiable thirst for data in oncology as treatment paradigms are 
shifting to targeted molecular therapies. 
Methods: From nineteenth-century medical notes consisting 
entirely of narrative description to standardised forms recording 
physical examination and medical notes, we have nowadays 
moved to electronic health records (EHRs). All our analogue 
medical records are rendered as sequences of zeros and ones 
changing how we capture and share data. The challenge we face 
is to offload the analysis without entrusting a machine (or algo-
rithms) to make major decisions about a diagnosis, a treatment, 
or a surgery, keeping the human oversight. Computers don’t have 
judgment, they lack context.
Results: EHRs have become the latest addition to our toolset to 
look after patients. Moore’s law and general advances in compu-
tation have contributed to make EHRs a cornerstone of Molecular 
Tumour Boards, presenting a detailed and unique description of a 
tumour and treatment options.
Conclusions: Precision oncology, as a systematic approach 
matching the most accurate and effective treatment to each 
individual cancer patient, based on a molecular profile, is already 
expanding to other disease areas. 
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1   Introduction 
Precision medicine requires streamlined soft-
ware pipelines to handle vast amounts of infor-
mation, yet it faces additional challenges as we 
embrace new technologies: high-throughput 
sequencing, improved medical imaging, wear-
able sensors, etc. Over the past two decades, 
the fastest technological advance in history has 
universalised access to genomics, prompting 
an increase in the number of national genome 
sequencing programmes [1]. Managing these 
data and their interpretation are the biggest 
challenges alongside safe storage and long-
term preservation. Redundant data can clog 
our warehouses, but “data” is not synonymous 
of “information”. Data scientists are required 
to curate noisy datasets. All this is ushering 
us to a new era of “precision healthcare”, 
bringing human biology to centre stage as we 
integrate information about complex traits 
and susceptibility to disease in our healthcare 
systems. Information from a wide variety 
of sources is transforming personal health 
and challenging already overstretched health 
management systems. We must find the right 
way to access it without neglecting privacy 
and data provenance tracking [2].

Medical care is largely defined by clinical 
practice guidelines based on population-lev-
el data, however genomic medicine relies on 
an individual’s genome information to guide 
personal strategies for disease diagnosis, 
treatment, and prevention. Cancer patients 
are now routinely stratified according to 
which treatment will be most effective for 
their tumour. The identification of clinically 
useful gene expression signatures can also be 
used to adjust a therapy regimen to reduce 
risk of toxicity, resulting in better patient 
survival. This transformation in patient 
management is not restricted to cancer, as 
we are starting to see similar approaches in 
other complex diseases [3].

Oncology has become increasingly 
data-driven. Genomic and molecular ad-
vances inform the development of targeted 
therapies replacing the traditional approach 
of describing tumours as a disease of the 
tissue of origin (e.g., breast cancer, colorec-
tal cancer, or lung cancer) and cell types 
(sarcoma, carcinoma). New technologies 
and computational resources, which were 
unthinkable a few years ago, have made 
this a reality: including gene editing [4, 5], 
immunotherapy [6-9], and artificial intelli-
gence [10, 11]. As new information flows, 
more intriguing applications materialise 
beyond cancer [12].

2   Objectives
We are living a digital revolution driven not 
only by the abundance of data, but also by 
our capability to collect, store, and analyse 
this information. We often forget how much 
we rely on mathematical models to harness 
the data tsunami [13]. Each of our patients 
is systematically screened for a myriad of 
molecular information at the clinic. This 
generates terabytes of data per patient from 
which decisions must be taken regarding 
the best therapeutic options available. Inte-
grating such data (most of it unstructured) 
requires computational methods that involve 
bespoke procedures. Contextual information 
is essential as little signs may hide the clue 
to the correct interpretation, in particular 
in cases when useful domain knowledge is 
already available.

Genes play a fundamental role in the 
functioning of life. Genetics turns into 
genomics as we start analysing the entire 
DNA in an organism instead of just a few 
genes. Between two and 10 novel mutations 
creep into our genome when cells duplicate 

Published online: 2020-08-21



IMIA Yearbook of Medical Informatics 2020

185

Untangling Data in Precision Oncology – A Model for Chronic Diseases? 

their DNA [14]. The driving force behind 
inheritance and evolution will only be fully 
understood when due attention is given to 
DNA interactions [15]. 

3   Methods
Clinical records transcend their original 
purpose of keeping a record of disease 
progression and crucial information to 
support an optimal therapy. Hospitals have 
adopted EHR systems to hold mountains of 
paperwork [16-18]. Yet, clinicians favour 
flexible (unstructured) data entry methods. 
This requires therefore a careful strategy to 
capture that critical contextual information 
as we develop suitable tools. 

ConSoRe is a tool to query medical 
notes, pathology reports, diagnoses, hard-
to-find lifestyle data and structures, all the 
required information from an EHR system 
[19]. Processing unstructured medical notes 
with accuracy according to a predefined 
disease model, cancer, is automated [20]. It 
combines state-of-the-art text mining natural 
language processing (NLP) techniques with 
semantic knowledge graphs. It provides the 
necessary flexibility to enable physicians to 
quickly identify patients matching precise 
criteria (potentially reducing recruitment 
time for a clinical trial from years to just 
days or weeks). A disconnected patchwork 
of electronic information systems becomes 
queryable through a unique gateway, not far 
from the cancer Biomedical Informatics Grid 
(caBIG®) promoted by the NCI [21].

We are quantifying human health and 
disease with the help of artificial intelligence 
(AI) approaches. Large datasets are analysed 
helping us to discover new drugs and tailored 
treatments. However these applications in 
precision medicine can be severely hindered 
by the scarcity of data available in the training 
datasets. Indeed, we can find datasets contain-
ing nearly as many features as samples. When 
applied to population-based samples beyond 
the original clinical setting, these datasets will 
underperform due to distributional shift [22]. 

Another issue AI faces is that it cannot yet 
replicate the diagnostic process. A physician 
will order different tests sequentially through-
out the period she’s following a patient, any 

given test might be ordered due to the results 
of a previous result. So, when an algorithm is 
trained on retrospective corpora, the temporal 
dimension is removed and therefore the de-
pendency within the dataset is often lost. Any 
such model subsequently produced will not 
include the related decisions which ultimately 
led to the original diagnosis [23]. 

The final aspect in this equation is ac-
countability. Algorithms should be able to 
detect biases and therefore, they require 
robust and complete data [24, 25]. When 
we use mathematical models (e.g., neural 
networks) to identify patterns, skewed 
collections will lead to biased models (data 
collections may contain inaccuracies and 
errors which should have been cleaned prior 
to be used for training models) [26, 27]. 

An essential aspect in oncology is to 
relate a detailed and unique description of a 
cancer to useful properties such as response 
to therapy or risk of relapse. However, 
amongst the largest public cancer cell line 
panels there is a poor representation of key 
mutations [28, 29], this means any model 
developed with these will be statistically 
underpowered. 

We are building a digital ecosystem 
integrating new and existing technologies 
and data. We can investigate the potential of 
representation learning for cancer genomics 
to allow the Molecular Tumour Board to ex-
ploit the hierarchical and multi-scale nature 
of the data available.

4   Results
Ever since Hippocrates founded his school 
of medicine in ancient Greece some 2,500 
years ago, observation, experimentation, 
and data analysis have been a core ethical 
principle of medicine. Precision medicine 
relies upon comprehensive data (and bio-
banks) on patient treatment and outcomes. 
Analysis of these data leads to improved 
models providing the basis for treatment, 
and for direct use in clinical decision-mak-
ing. In fact, it is data from previous patients 
that will probably play the biggest role in 
making a current patient well again. It gives 
our treating teams the essential insights and 
knowledge on which to base their care. We 

aggregate data in warehouses, we have men-
tioned ConSoRe, but in France alone, we can 
find other models outside oncology applica-
tions such as Dr Warehouse and eHOP [30, 
31]. Ethical and legal issues are paramount 
when developing these infrastructures, as it 
is unclear how samples (and data) might be 
re-used and whether any future uses were 
compatible with the original consent. 

AI is unleashing an array of new approach-
es to healthcare, but we need to continuously 
benchmark any progress. Innovative technol-
ogies will only be widely adopted in medicine 
once they significantly improve outcomes for 
patients, and their implementation is ironed 
out. Solutions with potential for widespread 
adoption cannot be resource intensive to de-
ploy and use, and should not be too complex. 
Manually annotated cohorts can be used to 
establish baselines to benchmark automated 
tools [32]. An example we have been using 
at Institut Curie, is ESMÉ cohort (grouping 
30,000 breast cancer patients), a well anno-
tated resource from the Unicancer excellence 
network of French Comprehensive Cancer 
Centres. Structuring medical records with 
ConSoRe can be compared to the work from 
an experienced team of curators. 

Understanding how cancer arises requires 
more than converting biopsies into ones and 
zeroes, or lists identifying which genes are 
mutated in certain cancers. Molecular signa-
tures bring us a step closer towards finding 
interventions to halt disease and enhance 
health. Patient stratification meets clinical 
practise, evidence reveals the language of 
the cell as each subtype may exhibit a pre-
dictable clinical phenotype.

Machine Learning (ML) is benefiting 
from robust platforms that enable scalable 
and reproducible computing on large data-
sets, however, quality is often the challenge 
[33]. Oncology datasets are often unsuited, 
as we are dealing with noisy and sparse 
data, various independent resistance mecha-
nisms can operate [34]. Particular attention 
must be paid to avoid overfitting [35], when 
comparing results. The final model would 
only be as good as the data that was used 
to develop it and test it. 

In a moment when the healthcare data 
economy is booming, places like Oxford, 
Paris, or Cambridge are teeming with start-
ups promising to harness the power of data. 
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Precision oncology increases the range of 
treatment options, bringing quality im-
provements, but for only a relatively small 
number of people. Challenging the modern 
clinical trial paradigm with basket-trial ap-
proaches is blurring one of the hallmarks of 
medicine, the educated guess, without any 
pretentions of certainty.

5   Discussion
The potential of computers to transform the 
clinical decision process has long been rec-
ognised. We can trace medical informatics 
as an interdisciplinary research field back to 
the 1960s [36, 37]. Mycin, an ad hoc model 
with about 450 rules developed to diagnose 
blood infections, was one of the first expert 
systems [38]. ADM, a computer-assisted 
diagnostic system developed in 1972, cov-
ered 2,500 diseases with 22,000 signs and 
symptoms [39, 40]. 

Despite decades of research on the 
development of computer-based patient 
records the process has been hindered by the 
hope that difficult clinical problems might 
yield to mathematical formalisms [41]. To-
day, technology is placed at the fingertips of 
everyone; wearables offer an opportunity to 
capture first-hand data and address disease 
in the early stages. However, this comes 
with a risk of swamping already saturated 
health services with anxious individuals 
alarmed by false positives, following the 
adoption of devices promising real-time 
atrial fibrillation detection [42]. 

Genomics enables us to decipher and 
understand the blueprint of a living or-
ganism as we better understand biological 
systems at a molecular level. When the 
human genome was first assembled [43, 
44], it would have been hard to predict that 
a few years afterwards the future in cancer 
would pass by single-cell sequencing. To-
day, we can sequence individual cells from 
biopsy samples or circulating tumour cells, 
enabling earlier diagnoses. Even when the 
cost of sequencing a cancerous tumour has 
dramatically dropped to affordable levels, 
the cost of understanding what then needs 
to be done remains considerably high [45]. 
Bringing our knowledge about the clinical 

implications of various genomic elements to 
the Molecular Tumour Board still requires 
substantial research investment [47]. 

In the precision medicine space we are 
often expected to assess not only how new 
tests can guide our decisions (companion 
diagnostics), but also which additional 
value they bring to the healthcare system 
(exploring drug repurposing). The ultimate 
goal in precision medicine is not only to 
treat patients based on their unique biology, 
but to get such better care without spending 
more money.

The publication of the first draft of our 
genome, and the beginning of precision med-
icine, concluded with the following words: 
“it has not escaped our notice that the more 
we learn about the human genome, the more 
there is to explore”. Twenty years after this 
major milestone, we can only stress how true 
those words were.

6   Conclusions
Only those technologies showing genuine 
clinical utility will be widely adopted in med-
icine. ML enables us to extract knowledge 
from the outcomes of thousands of patients 
(billions in a global context) to inform care 
of each single patient. Structured information 
plays a critical role in medical decision-mak-
ing. A central promise of ML in medicine is 
that each patient will benefit from the wisdom 
contained in the decisions made by nearly all 
clinicians as they will be based on the out-
comes of billions of past patients. A corollary 
is that patients need to be informed that by 
sharing their data they are not only helping 
individuals today, but also future patients. 

As Eric Topol says “Electronic health 
records have broken the backs of clinicians 
and made them into data clerks. So why 
would anyone in their right mind think that 
we could have a rescue through technology? 
(…) We’ve never had a technology that could 
actually give us the gift of time” [48]. We are 
not discussing digital alchemy, but augment-
ed medicine through rigorous research that 
provides unequivocal benefit for patients. 

We have seen that the potential value 
of computers in medicine is not something 
recent, but the development of digital 

ecosystems embedding information from 
EHRs allow us to streamline clinical queries 
across normalised medical records. Within 
this context, we expand our toolset beyond 
the hospital, extending the ever-increasing 
patient cohorts with new data types, opens 
the door to new exciting opportunities in 
Precision Oncology [49].

Any innovation must not only address 
clinical problems but should result in sig-
nificantly improved outcomes for patients. 
It should not be too complex or resource 
intensive to implement and use, and should 
have the potential for widespread adoption 
and diffusion [50]. The emphasis is often put 
on data quantity when it should be on quality, 
which is inherently expensive as it requires 
human curation. Data can be augmented, but 
quality cannot be taken for granted.

There is a hard lesson to learn when wan-
dering in the limits of science and medicine. 
Solutions must involve a team physician-sci-
entist, otherwise we risk solutions will not be 
adopted. We may have elucidated the iconic 
double helix and have a better understanding 
of immunology, but we are still unable to 
save people from most forms of malignancy. 
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