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Summary
Objectives: This scoping review synthesizes the recent literature 
on precision public health and the influence of predictive models 
on health equity with the intent to highlight central concepts for 
each topic and identify research opportunities for the biomedical 
informatics community.
Methods: Searches were conducted using PubMed for publica-
tions between 2017-01-01 and 2019-12-31.
Results: Precision public health is defined as the use of data 
and evidence to tailor interventions to the characteristics of a 
single population. It differs from precision medicine in terms of 
its focus on populations and the limited role of human genomics. 
High-resolution spatial analysis in a global health context and 
application of genomics to infectious organisms are areas of 
progress. Opportunities for informatics research include (i) the 
development of frameworks for measuring non-clinical concepts, 
such as social position, (ii) the development of methods for 
learning from similar populations, and (iii) the evaluation of 
precision public health implementations. Just as the effects of 
interventions can differ across populations, predictive models can 
perform systematically differently across subpopulations due to 
information bias, sampling bias, random error, and the choice 
of the output. Algorithm developers, professional societies, and 
governments can take steps to prevent and mitigate these biases. 
However, even if the steps to avoid bias are clear in theory, they 
can be very challenging to accomplish in practice.
Conclusions: Both precision public health and predictive mod-
elling require careful consideration in how subpopulations are de-
fined and access to data on subpopulations can be challenging. 
While the theory for both topics has advanced considerably, there 
is much work to be done in understanding how to implement and 
evaluate these approaches in practice.
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Introduction
Precision public health and the influence 
of predictive models on health equity are 
two topics that have received considerable 
attention recently. Common drivers for both 
topics include the increasing amount of data 
available and advances in statistical and 
machine learning methods. This scoping 
review synthesizes the recent literature on 
these two topics with the intent to highlight 
central concepts for each topic and identify 
research opportunities for the biomedical 
informatics community. 

Methods
Searches were conducted using PubMed 
with a single query for each topic and 
publication dates between 2017-01-01 and 
2019-12-31, the date of the final search. 
Each title, and the abstract if necessary, 
was reviewed to determine if the article ad-
dressed the topic. More specifically, articles 
were sought that explicitly considered and 
commented on the topic. Potentially rele-
vant articles were retrieved, and references 
reviewed to identify other relevant articles. 
The search for “precision public health” 
returned 77 articles and 20 were retained. 
There were 4 articles matching this query 
prior to Jan 1, 2017. The search for “equity 
and (algorithm or prediction)” returned 156 
articles and after review 15 were retained. 
There were 204 articles matching this query 
prior to Jan 1, 2017.

Results
Precision Public Health
The most generally accepted definition of 
precision public health (PPH) is the use of 
data and evidence to tailor interventions to 
the characteristics of a single population 
[1]. Achieving ‘precision’ requires high-res-
olution surveillance data to set priorities 
that are tailored to a specific population 
and the ability to select an evidence-based 
public health intervention best matched to 
the characteristics of a population [2, 3]. 
In this section, the author reviews recent 
publications about PPH to characterize the 
issue, to examine how the concept has been 
applied, and to identify opportunities for 
informatics research.

Although precision medicine [4] laid 
the foundation for precision public health, 
there are two important distinctions between 
‘precision’ in medicine and in public health. 
One fundamental difference is the unit of 
interest, namely a population as compared 
to a single patient [5]. Although some have 
argued that the aggregate effects of precision 
medicine can improve population health one 
patient at a time [6], there is broad support 
in the public health community for consider-
ing populations explicitly [7] so that equity 
across sub-populations can be assessed, and 
inequities addressed. The second distinction 
is that the role of genomic information is 
currently much more limited in PPH. How-
ever, the concept of PPH has been applied to 
population health genomics [8], for example 
pharmacogenomics[9, 10], and some have 
proposed that polygenic risk scores may 
have application within a PPH context [11].
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While a consensus appears to be emerg-
ing around the concept of PPH, the topic 
is not without controversy, which has led 
some junior investigators to argue for the 
importance of continuing research in this 
area [12]. Most notably, some have suggested 
that PPH could divert attention away from 
the broader determinants of health towards 
clinical concepts, which tend to be measured 
with greater accuracy [13]. For example, the 
social determinants of health, such as social 
status, are generally not measured well, so 
they may play a limited role in character-
izing populations and identifying optimal 
interventions [7, 14]. Concerns have also 
been raised about attempts to use genomic 
data in PPH, due to the limited availability 
of such data for many sub-populations and 
the usually small effect size at a population 
scale compared to other determinants of 
health [7]. Even if genomic data are not 
used, some have argued that PPH is sim-
ply a new term for what public health has 
always done [1, 15], although others have 
countered that PPH highlights the role of 
‘Big Data’ and computational methods in 
targeting public health interventions to 
improve population health [3].

Research in PPH has tended to address 
the ‘diagnostic’ (i.e., measurement and 
priority setting) more so than the ‘thera-
peutic’ (i.e., selection and management of 
evidence-based public health interventions) 
aspects of PPH. In terms of measurement, 
advances in methods such as spatial statistics 
have allowed highly accurate sub-regional 
mapping of population characteristics in 
global health research. For example, one 
method estimates the resolution of 5 km by 
5 km cells for the African continent, HIV 
prevalence [16] and exclusive breastfeeding 
until 6 months of age [17]. In another study, 
the authors created similar high-resolution 
estimates of educational attainment across 
low and middle-income countries [18]. Such 
high-resolution measurement of important 
health indicators facilitates consideration of 
intervention strategies with greater precision 
than was previously possible [19, 20]. This 
application of PPH in a global health context 
has been called ‘precision global health’ 
[21], and it draws on a range of technologies 
and methods to improve measurement in 
global health [20, 21].

From a therapeutic or public health inter-
vention perspective, some of the most prom-
ising applications of PPH have been in infec-
tious disease control. In this context, which 
some have called ‘precision epidemiology’ 
[22], the genomics of the infectious organism 
plays a central role [22-24]. Through the 
identification of transmission networks [25] 
and optimal antimicrobial therapy [26] rapid 
sequencing and analysis of the genomes of 
infectious organisms can be used to identify 
the best strategies for preventing transmis-
sion and treating disease. However, some 
have noted that genomic data on organisms 
is rarely sufficient to understand the mech-
anisms of disease transmission, and that 
data for ‘deep phenotyping’, or describing 
precisely the characteristics of disease, are 
also needed [22].

While the concept of PPH is gaining 
traction and initial research results in global 
health and infectious diseases are promising, 
there remain many opportunities for informat-
ics research in this area. From a measurement 
or diagnostic perspective, widely adopted 
frameworks for measuring non-clinical 
concepts, such as social position [14] are 
needed to consistently classify populations 
for precisely identifying interventions [27]. 
These advances in measurement, especially 
through the use of new and large data sources, 
have some overlap with the concept of digital 
epidemiology [28]. In terms of therapy or 
the identification of interventions that best 
matched with a population, most efforts in 
PPH have so far relied on experts to interpret 
the data and identify interventions. However, 
as in precision medicine, there is considerable 
opportunity to develop methods for learning 
from similar populations [29] and for using 
causal reasoning to integrate evidence from 
different sources to estimate the effect of an 
intervention in a specific population [30]. For 
example, if public health agencies were to 
systematically record and share information 
about implemented interventions along with 
characteristics of populations and effects of 
interventions, it would create a foundation 
for a “learning public health system”. Final-
ly, there are many research opportunities in 
the implementation and evaluation of PPH 
strategies, although some have noted that 
the digitization of public health practice is a 
prerequisite for implementation of PPH [31].

Prediction and Equity
The ethical and equitable distribution of 
healthcare resources and health outcomes, 
a focus of this yearbook, has long been an 
explicit goal of modern health systems and 
is central to global sustainable development 
goals [32]. In the context of the recent 
renaissance of machine learning [33], and 
particularly deep neural networks and 
reinforcement learning, the potential for 
prediction models in clinical medicine and 
public health to exacerbate health inequities 
is increasingly recognized [34, 35]. In this 
section, we review recent publications on this 
topic to characterize the issue, examine how 
model biases may have inequitable effects, 
and identify what can be done to prevent and 
mitigate these biases.

At a high level, prediction models 
in healthcare, whether statistical or ma-
chine-learning in nature, take inputs in 
the form of patient data and produce an 
output, usually in the form of a probability 
or a predicted class. From a population or 
public health perspective, if the validity of 
the outputs differs systematically across 
subpopulations then the use of the model to 
guide decisions in practice can exacerbate 
health inequalities. For example, in a jus-
tice context, a model predicting recidivism 
to guide decisions about granting parole, 
could increase sex-based inequalities if 
it systematically overpredicts recidivism 
in women [36]. In a healthcare context, a 
model that systematically underpredicts the 
resources needed by black patients, could 
increase racial inequalities if it is used to 
direct proportionally more resources to 
white patients [37].

Models can perform systematically 
differently across subpopulations due to 
information bias, sampling bias, random 
error, and the choice of the output [34, 38-
40]. Information bias can occur where the 
quality or amount of data differs systemati-
cally between subpopulations. For example, 
people from areas with lower socioeco-
nomic status tend to visit more clinicians 
and have fewer tests ordered, which could 
produce systematic differences in data held 
within electronic medical records [38, 41]. 
Sampling bias can arise when the propor-
tion sampled differs systematically across 
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subpopulations. For example, an algorithm 
trained to predict depression from language 
used on Facebook [42] may not work well 
when applied to text from teenagers, who 
are less likely to use that platform [43]. 
However even if sampling is uniform across 
subpopulations, for subpopulations with 
fewer individuals, the number available for 
training a model may be too low to achieve 
an acceptable precision when making pre-
dictions [38]. The choice of the output for 
the model to predict can also be a source of 
bias if the output is not aligned with what 
the model is expected to accomplish [39]. 
For example, using healthcare cost as an out-
put, as opposed to a composite of cost and 
health status, can reinforce existing racial 
inequalities in the allocation of healthcare 
resources [37, 44].

Algorithm developers, professional so-
cieties, and governments can take steps to 
prevent and mitigate the biases described. 
Many papers have been published suggest-
ing steps that model developers can take to 
address biases that may lead to inequalities 
[34, 38-40, 45]. Suggested actions have been 
identified at the stages of model conception, 
model training and testing, and deployment 
and monitoring [34]. Mistaking the objective 
[39] is a potential problem at the conception 
stage that may be prevented by consulting 
with diverse groups, considering the eth-
ical implications of using the model, and 
ensuring that its outputs are aligned with 
its intended use in the health system[34, 
38]. In model training, authors have identi-
fied pitfalls [39] and challenges [45], with 
suggestions to build and test algorithms in 
diverse socioeconomic health systems [38] 
and to measure important metrics [46] and 
allocation across subpopulations [34]. Once 
implemented and in routine use, it is possible 
to monitor the outputs and associated out-
comes using automated alerts and through 
feedback from patients and clinicians [34].

Although the steps to avoid biases may 
be clear in theory, some have noted that 
taking these steps in practice can be very 
challenging [47]. In particular, access to 
data across diverse settings has been noted 
as a challenge [48]. A potential approach, 
proposed in New Zealand, is to develop a 
national data resource that model develop-
ers can use to generate predictive models 

of cardiovascular disease [49]. Recommen-
dations to avoid biases in machine learning 
were also made in a report on artificial 
intelligence in medicine from the National 
Academies in the US [50] and a similar re-
port commissioned by the National Health 
System in the UK [51].

Discussion
The definition of subpopulations or popu-
lation strata is central to both of the topics 
explored in this survey. In precision public 
health, a subpopulation must be identified in 
order to characterize the needs and identify 
the interventions that best matched those 
needs. In assessing the potential impact of 
a model on health equity, subpopulations 
must also be identified, so that the distri-
bution of model outcomes across subpop-
ulations can be assessed. In other words, 
PPH tends to focus within a subpopulation 
to optimize interventions for that subpop-
ulation while assessment of equity tends 
to look across subpopulations to fairly 
distribute resources across subpopulations. 
The approach to defining subpopulations 
tends to differ, however, with subpopula-
tions generally defined spatially based on 
geographical boundaries in PPH, especially 
in global health settings. In contrast, for 
prediction models, subpopulations are usu-
ally defined by individual characteristics, 
such as sex and ethnicity. Interestingly, 
although the definition of subpopulations 
is central to both topics, there appears to be 
little explicit consideration in the literature 
of how subpopulations should be defined. 
In both cases though, the most important 
characteristics of subpopulations (e.g., sex, 
social status) are those that may modify 
or influence the inference or prediction. 
If both PPH and prediction modeling are 
to be applied in an equitable and effective 
manner, then renewed attention must be 
given to ensuring that data are available 
to measure and model the most important 
characteristics of subpopulations. 

Unfortunately, accessing data to char-
acterize subpopulations is a challenge 
central to both topics. The measurement 
aspect of PPH and the assessment of equity 

in prediction models both tend to rely on 
the secondary analysis of data originally 
collected for other purposes. However, 
such data tend to not be uniformly avail-
able across subpopulations, which can be 
problematic, especially if the non-uniform 
coverage is not acknowledged explicitly. 
The implication for PPH is that the needs 
will be assessed with greater precision 
in some subpopulations, which may lead 
to more effective interventions in those 
populations, potentially increasing inequal-
ities. A similar situation also exists for the 
therapeutic aspect of PPH. If interventions 
are less likely to be evaluated in some 
subpopulations, then the evidence about 
interventions in those subpopulations will 
be limited, making it difficult to identify 
optimal interventions. For prediction mod-
els, as discussed above, non-uniform data 
across subpopulations can result in differing 
model performance across sub-populations, 
which can exacerbate inequalities.

In addition to improvements in data, 
advances in training are necessary if the 
potential benefits of PPH and prediction 
modeling are to be realized. Both topics, 
like biomedical informatics, are at the in-
tersection of multiple disciplines and draw 
on a range of methods. While trainees in 
some programs in biomedical informatics 
may be exposed to aspects of prediction 
modeling and PPH, these topics may not be 
addressed directly. In other fields, such as 
epidemiology, biostatistics, and computer 
science, training tends to address some, but 
not all, of the underlying methods needed 
to successfully develop, implement, and 
evaluate PPH approaches and prediction 
models. Education programs in biomedical 
informatics and related disciplines could 
benefit from a more direct and wholistic 
consideration of both PPH and prediction 
modeling as examples of how multiple 
methods and perspectives are relevant to 
advancing public health. 

Finally, both topics examined in this 
survey are somewhat abstract, in that they 
define overarching frameworks which are 
meant to be helpful in advancing public 
health, including health equity. However, 
the practical implementation of these 
frameworks can be challenging. In PPH, 
there has been considerably more focus on 
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increasing precision in measurement than 
on how to use this improved precision to 
identify optimal interventions for subpop-
ulations. Similarly, for mitigating biases 
in prediction models that may exacerbate 
inequities, the strategies proposed, such as 
building and testing algorithms in diverse 
socioeconomic health systems, are likely to 
be challenging in practice. 

Conclusion
The theory underlying precision public 
health and the prevention and mitigation of 
biases in prediction models to advance health 
equity have advanced considerably. Driven 
by the increasing availability of data and 
advances in statistics and machine learning, 
researchers and practitioners are increasingly 
applying and evaluating these frameworks. 
However, there remains much work to be 
done to understand how to implement and 
evaluate these concepts in practice. Most 
notably, there is a need to clarify how sub-
populations are defined, to ensure that data 
are available to measure important charac-
teristics of subpopulations, and to adequately 
train researchers and practitioners in these 
frameworks and the underlying methods 
upon which they depend.
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