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Summary
Introduction: There has been a rapid development of deep 
learning (DL) models for medical imaging. However, DL requires 
a large labeled dataset for training the models. Getting large-
scale labeled data remains a challenge, and multi-center data-
sets suffer from heterogeneity due to patient diversity and varying 
imaging protocols. Domain adaptation (DA) has been developed 
to transfer the knowledge from a labeled data domain to a relat-
ed but unlabeled domain in either image space or feature space. 
DA is a type of transfer learning (TL) that can improve the perfor-
mance of models when applied to multiple different datasets. 
Objective: In this survey, we review the state-of-the-art DL-
based DA methods for medical imaging. We aim to summarize 
recent advances, highlighting the motivation, challenges, and 
opportunities, and to discuss promising directions for future work 
in DA for medical imaging.
Methods: We surveyed peer-reviewed publications from leading 
biomedical journals and conferences between 2017-2020, that 
reported the use of DA in medical imaging applications, grouping 
them by methodology, image modality, and learning scenarios.
Results: We mainly focused on pathology and radiology as appli-
cation areas. Among various DA approaches, we discussed domain 
transformation (DT) and latent feature-space transformation (LFST). 
We highlighted the role of unsupervised DA in image segmentation 
and described opportunities for future development. 
Conclusion: DA has emerged as a promising solution to deal with 
the lack of annotated training data. Using adversarial techniques, 
unsupervised DA has achieved good performance, especially for 
segmentation tasks. Opportunities include domain transferability, 
multi-modal DA, and applications that benefit from synthetic data.
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1   Introduction
Medical imaging informatics utilizes digital 
imaging processing and machine learning 
(ML) to improve the efficiency, accuracy, and 
reliability of imaging-based diagnosis [1]. 
During the past few years, medical imaging 
informatics has made remarkable progress 
due to the increasing availability of data 
and the rapid development of deep learning 
(DL) techniques [2]. However, fundamental 
challenges hinder the effective deployment 
of deep learning models to clinical settings. 
Annotated medical datasets are limited due 
to the tedious labeling process [2] and are 
not easily shared due to privacy concerns [3, 
4]. While multicenter datasets can increase 
the amount of annotated data, these datasets 
suffer from heterogeneity due to varying 
hospital procedures and diverse patient 
populations [5, 6]. Due to a distribution 
shift (also known as domain-shift) between 
the available training dataset and the dataset 
encountered in clinical practice, pre-trained 
models trained by one dataset may fail for 
another dataset. 

1.1   What is Transfer Learning and 
Domain Adaptation
Transfer learning (TL) [7] is a technique 
that applies knowledge learned from one 
domain and one task to another related 
domain and/or another task, when there 
is insufficient labeled data for traditional 
supervised learning. For medical imaging, a 
domain usually refers to images or features, 
while the task refers to segmentation, clas-

sification, etc. Mathematically, X and Y being 
random variables, where X is d-dimensional 
feature space with marginal probability dis-
tribution p(X) and Y  is a labeled vector with 
conditional probability distribution p(Y|X), 
we use D ={X, p(X)} to represent domain and 
T={Y, p̂(Y|X)} to represent task, where p̂ is 
learnt using a function (e.g. neural network). 
If both source (DS) and target domains (DT) 
are similar, i.e., DS ~ DT,

 
then DS and DT can 

use the same ML model for similar tasks 
(TS~TT). However, if DS≠DT or TS≠TT, the 
ML model trained on the source domain 
might have decreased performance on the 
target domain (DT). TL can be categorized 
into three types based on the relationships 
between domains and/or tasks:
1. Inductive TL requires some labeled data. 

While the two domains may or may not 
differ (DS~DT  or DS≠DT), the target and 
source tasks are different (TS≠TT), for e.g. 
3D organ reconstruction across multiple 
anatomies;

2. Transductive TL requires labeled source 
data and unlabeled target data with re-
lated domains (DS~DT) and same tasks 
(TS=TT), while the marginal probability 
distributions differ (p(XS)≠p(XT)), for 
e.g., lung tumor detection across X-Ray 
and computed tomography images;

3. Unsupervised TL does not require labeled 
data in any domain and has different tasks 
(TS≠TT), for e.g., classifying cancer for 
different anatomies using unlabeled his-
tology images.

Domain Adaptation (DA) is a transductive 
TL approach that aims to transfer knowledge 
across domains by learning domain-invariant 
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transformations, which align the domain 
distributions (see Figure 1-b). DA assumes 
that the source data is labeled, while the 
target domain can be (a) fully labeled data 
(i.e., supervised setting); (b) a small set of 
labeled data (i.e., semi-supervised setting); 
or (c) completely unlabeled data (i.e., unsu-
pervised setting). 

1.2   Using Domain Adaptation to 
Improve Model Training in Medical 
Imaging
In biomedical imaging, due to the exis-
tence of multi-modality imaging (e.g., 
magnetic resonance imaging (MRI) and 
positron emission tomography (PET)), 
DA has advantages over conventional 
semi-supervised learning or unsupervised 
learning. Cross-modal DA transfers labels 
between distinct, but somewhat related, 
image modalities (e.g., MRI and computed 
tomography (CT)). Single-modality DA 
adapts different image distributions within 
the same modality [8] (Figure 2).

1.2.1   Challenge of Limited Training Data
Developing accurate DL models requires 
large scale training data covering a wide range 
of input variations. However, in biomedical 
imaging, due to concerns over patient privacy 
[3,4] and lack of manual annotation of images 
by clinical experts [9], few well-labeled data-
sets are available for training. This situation is 
worse for rare diseases, where a low number 
of positive cases lead to significantly unbal-
anced datasets [10]. 

DA can mitigate the lack of well-anno-
tated data by augmenting target domain 
data, either by generating synthetic labeled 
images from source images or aligning 
source and target image features and 
training a task network on them [11, 12, 
112]. For example, MRI achieves higher 
resolution for soft tissue imaging compared 
to CT [13]. As such, MRI is preferred for 
neuroimaging, and brain MRI annotations 
are easily accessible. On the other hand, CT 
imaging is fast and less expensive and may 
be preferred in trauma situations [14]. Thus, 
through DA, annotated MRI scans from 
historical subjects can be combined with CT 

to reduce the number of image acquisitions 
needed. As another example, Hematoxylin 
and Eosin (H&E) stained images are widely 
available, while immunohistochemistry 
(IHC) images, which clearly highlight nu-
clei via specific biomarkers [15], are not. 
DA methods can translate multi-stained 
H&E-stained images to the IHC domain, 
making nuclei detection easier [16].

1.2.2   Challenge of Dataset Variations
To train robust DL models, many studies rely 
on images aggregated from multiple institutes 
such as NCI/NIH The Cancer Genome Atlas 
(TCGA) [17] and Stanford’s large chest ra-
diograph dataset, CheXpert [18]. The data in 
these repositories are heterogeneous due to 
varying hospital processes (image acquisition 
platforms or data preparation protocols), dif-
ferent demographics of patient populations 
(ethnicity, gender, age), or different patho-
logical conditions [5]. Specifically, pathology 
images have stain variations [19] while MRIs 
are susceptible to varying magnetic fields 
and contrast agents [20]. Such intra- or in-

Fig. 1   a) Transfer learning (TL) and its different types; b) Overview of domain adaptation; c) Organization of this survey paper.
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ter-dataset variations cause the training and 
test dataset to have different distributions, 
resulting in a domain-shift which impacts 
model generalization [21, 22]. Diversifying 
the training data by creating larger datasets is a 
possible solution, but recent medical imaging 
studies [21, 23, 24] have shown that it does 
not guarantee improved generalization. DA 
methods try to minimize the dataset variation, 
while retaining the distinguishing aspects 
for task classifier, and have been shown to 
generalize well in image segmentation tasks 
for multiple modalities [25-27].

The organization of the survey paper is 
illustrated in Figure 1-c. Section 2 introduces 
our survey methodology in identifying and 
selecting relevant medical imaging studies. 
Section 3 presents various DL-based frame-
works in the DA literature and the current 
best practices for medical imaging. Section 
4 summarizes the current DA challenges and 
future opportunities. 

2   Materials and Methods
In this survey, we examined publications 
between 2017-2020. We considered the pro-
ceedings of leading peer-reviewed journals 
and conferences, including IEEE Transactions 
on Medical Imaging, the International Con-
ference on Medical Image Computing and 
Computer Assisted Intervention (MICCAI), 
Medical Image Analysis (Elsevier), IEEE 
International Symposium on Biomedical 
Imaging (ISBI), Conference on Computer 
Vision and Pattern Recognition (CVPR), 
Association for the Advancement of Artificial 
Intelligence (AAAI), and the International 
Conference on Medical Imaging with Deep 
Learning (MIDL). Additionally, we identi-
fied a few relevant works from arXiV and 
PubMed, which were not found in review 
proceedings. Our search keywords included 
‘Domain Adaptation’, ‘Transfer Learning’,’ 
Cross Modality’, ‘Multimodal’ and ‘Medical 

Image Adaptation’, and ‘Medical Images’. We 
found that radiology and pathology were the 
most common application areas (characteris-
tics of our results are illustrated in Figure 3-a 
and Figure 3-c). Cross-modality segmentation 
is observed more extensively in radiology 
compared to other areas. MRI, CT, and PET 
maintain better relative morphological-con-
sistency of organs and provide complementa-
ry information for disease detection [30]. On 
the other hand, histopathology with smaller 
objects, such as nuclei, are prone to artifacts 
during cross-modal translation [31].

3   Deep Learning-based 
Domain Adaptation
DL-based DA is achieved using various 
representation learning strategies such as 
aligning the domain distributions, learning 

Fig. 2   a) Summary of domain adaptation methodologies employed in medical imaging; b) Different scenarios encountered in cross-modality [16, 28] and single-modality [25, 29] domain adaptation.
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a mapping between domains, separating 
normalization statistics, and ensemble-based 
approaches [32-34]. As shown in Figure 2-a, 
there are two families of DA approaches 
for medical imaging: (a) Domain Trans-
formation (DT-DA) translates images from 
one domain to the other domain, so that the 
obtained models can be directly applied to 
all images, and (b) Latent Feature Space 
Transformation (LFST-DA) aligns images 
from both domains in a common hidden 
feature space to train the task model on top 
of the hidden features. These two approaches 
can work together to improve adaptation 
performance by preserving finer semantic 
details [35,36]. We have summarized the 
application of these DA methods in medical 
imaging in Table 1.

3.1   Domain Transformation in 
Domain Adaptation 
DT-DA translates images from one domain 
to another domain (i.e., image-to-image 
translation [37]). Such translation is typi-
cally done using generative models (e.g., 
generative adversarial networks (GANs)) 
[38], which achieve pixel-level mapping by 
learning the translation at a semantic level.
The translation direction is usually decided 
by the relative ease of translation and mod-
eling in a modality [39]. For example, Dou 
et al., [36] observed lower performance in 
adapting CT to MRI for cardiac images, 
since cardiac MRI is more challenging to 

segment. The task networks are trained in-
dependently or jointly, with the image-trans-
lation network, using the labeled source 
images [35]. DT-DA performs alignment in 
the image space instead of the latent feature 
space, leading to better interpretability 
through visual inspection of synthesized 
images [40], enforcing semantic consistency, 
and preserving low-level appearance aspects 
using shape-consistency [41] and structur-
al-similarity constraints [42]. 

3.1.1   Unidirectional Translation 
Unidirectional translation maps images from 
the source domain to the target domain or vice 
versa using GANs (e.g., vanilla GAN and con-
ditional GAN (cGAN)) [43]. Compared with 
vanilla GAN, cGAN conditions the training 
of the generator and discriminator on extra 
information such as the class label. Yoo et 
al., [44] proposed pixel-level domain transfer 
using cGAN with a domain discriminator. Liu 
and Tuzel [45] utilized GANs coupled with 
shared weights to generate paired synthetic 
source and target images sharing high-level 
abstraction. Bousmalis et al., [40] leveraged 
cGAN with the content-similarity loss to gen-
erate realistic target images and jointly trained 
the GAN discriminator with the task network. 

Unidirectional translation has been 
applied to remove dataset variations. For 
example, Bentaieb et al., [29] designed a 
stain normalization approach, using a task 
conditional GAN to translate H&E images 
to a reference stain. Madani et al., [46] 

proposed a semi-supervised approach for 
cardiac abnormality classification using 
using GAN discriminator for abnormality 
classification in minimally labeled X-ray 
images, and showed that the adversarial loss 
could reduce domain overfitting. Mahmood 
et al., [39] translated real endoscopy imag-
es to graphically-rendered synthetic colon 
images with ground-truth annotations, for 
depth-estimation during surgical navigation. 
Unidirectional translation has also been 
applied to cross-modality scenario. For in-
stance, Zhao et al., [47] proposed a modified 
U-Net to translate paired brain CT to MRI. 

3.1.2   Bidirectional Translation
Bidirectional image translation (also known 
as reconstruction-based DT) leverages two 
GANs, constraining the mapping space by 
enforcing semantic-consistency between 
the original and reconstructed images. 
CycleGAN, by Zhu et al. [48], is one of the 
most popular architectures for bidirectional 
translation. CycleGAN utilizes cycle-con-
sistency to constrain the translation map-
ping and improve the quality of generated 
images. CycleGAN has been expanded to 
handle larger domain shifts with seman-
tic-consistency loss functions (CyCADA 
[35]), multi-domain translation (StarGAN 
[49]), and translation between two domains 
with multi-modal conditional distributions 
(MUNIT [50]). In supervised learning, bi-
directional translation expands the training 
data to make the segmentation task model 

Fig. 3   Categorization of medical imaging DA publications as per a) imaging modality; b) anatomy; c) learning scenarios
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robust. The translation and segmentation 
network can be trained either independently 
(two stages) or jointly. Zhang et al., [51] 
presented a one-stage framework with an 
additional shape-consistency loss in Cycle-
GAN to achieve better segmentation masks 
and lower failures. Chartsias et al., [11] used a 
two-stage framework to segment MRI images 
using CT images. Cai et al., [52] combined 
segmentation loss on generated images as an 
additional shape constraint for 3D translation 
and leveraged MRI for pancreas segmen-
tation in CT images. In the unsupervised 
setting, image translation is used to create 
labeled data for the target domain. Huo et al., 
[12] proposed a joint optimization approach 
for the synthesis and segmentation of CT 
images using labeled MRI. Their framework 
achieved comparable performance in com-
parison to the fully labeled case. 

There are a few observations about 
GANs: (a) CycleGAN does not guarantee 
consistent translation of minor anatomical 
structures and boundaries [53], and thus 
needs additional constraints like gradient 
[53] and shape consistency [51]. For instance, 
Jiang et al., [54] incorporated tumor-shape 
and feature-based losses to preserve tumors 
while translating CT data to MRI data; (b) 
Attention networks can account for varying 
transferability of different image regions 
[55]. For instance, Liu et al., [56] proposed 
a novel attention-based U-Net [57] as a GAN 
generator to translate hard-to-generate tex-
tured regions from MRI to CT. For alternate 
scenarios such as 3D-2D, paired images, or 
semi-supervised DA-DT, Zhang et al., [51] 
segmented X-ray images by using synthetic 
X-ray images created from accessible 3D 
CT annotations. Nguyen et al., [58] used 
semi-supervised DA with paired CT images 
to constrain CycleGAN to generate more re-
alistic images. Pan et al., [30] leveraged MRI 
to generate missing PET images for patients 
for Alzheimer’s disease diagnosis. Chen et al., 
[59] proposed state-of-the-art unsupervised 
segmentation method using bidirectional 
DA-DT between MRI and CT, combining Cy-
cleGAN with shared feature encoder layers 
between domains. Their method resembled 
CyCADA [41] and showed the efficacy of 
combining DT with feature-based alignment; 
(c) DA-DT can be used for single-modality 
medical imaging. Chen et al., [28] leveraged 

a CycleGAN with semantic-aware adversarial 
loss to perform lung segmentation across 
different chest X-ray datasets.

3.2   Latent Feature Space 
Transformation in Domain 
Adaptation 
Unlike the image-to-image translation in 
DT-DA, the LFST-DA transforms the source 
domain and target domain images to a shared 
latent feature space to learn a domain-in-
variant feature representation. The goal is to 
minimize domain-specific information while 
preserving the task-related information. The 
LFST-DA can be trained in an unsupervised 
fashion to obtain a domain-invariant represen-
tation, or in a concurrent manner where the 
representation network and the task network 
(e.g., image classification network) are trained 
simultaneously to improve the performance. 
LFST-DA is used in three basic implementa-
tions: divergence minimization [60-64], ad-
versarial training [65-68], and cross-domain 
reconstruction [69,70]. Compared to DT-DA, 
LSFT-DA is more computationally efficient 
because it focuses on translating relevant in-
formation only instead of the complete image 
[34]. Also, feature-based domain alignment 
outperforms DT-DA by preserving task-crit-
ical features [35]. 

3.2.1   Divergence Minimization
A simple approach to learn domain-invariant 
features and remove distribution-shift is to 
minimize some divergence criterion between 
source and target data distributions. Common 
choices include maximum mean discrepancy 
(MMD) [60], correlation alignment (COR-
AL) [61, 63], contrastive domain discrepancy 
(CDD) [64], and Wasserstein distance [62]. 
MMD, CORAL, and Wasserstein distances 
are class-agnostic divergence metrics and do 
not discriminate class labels when aligning 
samples. CDD-based DA aligns samples 
based on their labels, by minimizing the in-
tra-class discrepancy and maximizing the in-
ter-class discrepancy. MMD and CORAL are 
two of the most utilized divergence metrics 
that match the first-order moment (mean) and 
the second-order moment (covariance) of dis-
tributions. However, the represented hidden 

features can be complicated in the real world 
and may not be fully characterized by mean 
and covariance. Wasserstein distance aligns 
feature distributions between domains via 
optimal transport theory. Compared to the ad-
versarial-based approaches, divergence-based 
DA has not been as widely explored in med-
ical imaging. For cross-modality DA, Zhu et 
al., [71] utilized maximum mean discrepancy 
to map MR and PET images to a common 
space to mitigate missing data. Several works 
have used same-modality DA to mitigate 
dataset variations in X-ray [72], retinal fundus 
[73], and electron microscopy images [74].

3.2.2   Adversarial Training
Instead of minimizing a divergence metric, 
adversarial methods train a discriminator, 
typically a separate network, in an adversarial 
fashion against the feature encoder network. 
The goal of the feature network is to learn a 
latent representation such that the discrimi-
nator is unable to identify the input sample 
domain from the representation. For medical 
imaging, feature-based adversarial domain 
adaptation has been widely utilized for vari-
ous applications. For example, in cross-mo-
dality adaptation, Zhang et al., [75] applied a 
domain discriminator to adapt models trained 
for pathology images to microscopy images. 
LSFT-DA is also used for single-modality 
adaptation to overcome dataset variations 
in pathology images, MR images, and ultra-
sound images. For example, Lafarge et al., 
[76] have utilized a domain discriminator to 
mitigate the color variations of histopathology 
images for mitosis detection in breast cancer. 
Kamnitsas et al., [77] have applied a domain 
discriminator to MR images from different 
scanners and imaging protocols to improve 
the brain lesion segmentation performance.

3.2.3   Reconstruction-based Adaptation
The reconstruction-based adaptation max-
imizes the inter-domain similarity by 
encoding images from each domain to re-
construct images in the other domain. The 
reconstruction network (decoder) performs 
feature alignment by recreating the feature 
extractor’s input while the feature extractor 
(encoder) transforms input image into latent 
representation. Ghifary et al., [70] proposed 
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DRCN for object detection, using only target 
domain data reconstruction while Bousmalis 
et al., [69] proposed a domain separation 
network that extracts image representations 
in two subspaces: the private domain fea-
tures and the shared-domain features, the 
latter being used to reconstruct input image. 
For medical imaging, reconstruction-based 
methods are less developed and are usually 
combined with adversarial learning. For 
same-modality adaptation, Oliveira et al., 
[80] have combined image-to-image trans-
lation with a feature-based discriminator to 
mitigate the variations in X-ray images and 
improve segmentation performance. For 
cross-modality adaptation, Ouyang et al., [81] 
combined variational autoencoder (VAE) with 
adversarial training to adapt MR to CT scans. 

4   Challenges and 
Opportunities
4.1   Domain Selection and 
Direction of Domain Adaptation
Selecting related domains for effective 
knowledge transfer is an open-research area 
in ML. In medical imaging, domains are often 
selected based on the type of imaging tech-
nique (e.g., radiology), anatomy, availability 
of labeled data, and whether the modalities are 
complementary for the underlying task [30]. 
Regarding whether DA could be performed 
symmetrically across domains, the potential 
information loss in a particular direction is 
critical for assessing task performance. For 
example, for unsupervised DA from CT to 
MRI, reverse DA may sometimes be needed 
to preserve tumors [54]. For supervised DA 
between multiple H&E stained images, Tellez 
et al., [82] showed that mitosis-detection and 
cancer tissue classification in a particular color 
space leads to higher accuracy. Typically, to 
assess domain relationship and DA direction, 
it is necessary to use (a) large-scale empirical 
studies such as [6,58] exploring bi-directional 
DA across multiple datasets, (b) a represen-
tation-shift metric [24] to roughly quantify 
the risk of applying learned-representations 
from a particular domain to a new domain, 
or (c) multi-source DA [83], which automat-
ically explores latent source domains in multi-

source datasets and quantifies the membership 
of each target sample. However, such exper-
imentation requires extensive benchmarking 
studies that are lacking in medical imaging.

4.2   Transferability of Individual 
Samples
Most DA studies for medical imaging assume 
that all samples are equally transferable across 
two domains. Thus, they focus on globally 
aligning domain distributions. However, the 
ability to transfer (or align) varies across 
clinical samples because of: (a) intra-domain 
variations (e.g., in multi-modal DA between 
MRI and CT, each modality can have contrast 
variations) [75]; (b) noisy annotations due 
to human subjectivity; (c) target label space 
being a subset of source label space [84]; and 
(d) varying transferability among different 
image regions [55] (e.g., tumors are difficult 
to translate and could be missed during CT to 
MRI image-translation [54]). Some samples 
in the source domain may be less useful and 
can lead to negative transferring [84], which 
adversely impacts DA. Selecting relevant 
samples or reducing the impact of outlier 
samples using transferability frameworks 
is a potential solution. Some strategies in-
clude weighting samples based on classifier 
discrepancy [85], down-weighting outlier 
classes using the classification probability 
for target data [86], leveraging open-set based 
optimization [87], and leveraging an attention 
mechanism [55] to focus on hard-to-transfer 
samples or using a noise co-adaption layer 
[88]. Recent medical imaging studies have 
explored sample selection and transferability 
assessment using reverse classification accu-
racy [89], attention-based U-Net [56], and 
transferable semantic representations [84].

4.3   Limitations of Domain 
Adaptation in Medical Imaging
For medical imaging, most DL-based DA 
uses adversarial methods, primarily GAN for 
unsupervised DA. Adversarial methods are 
prone to errors because the discriminator can 
be confused, and there is no guarantee that the 
domain distributions are sufficiently similar 
[90]. Moreover, the generator in GAN is prone 

to “hallucinating” content to convince the 
discriminator that data belongs to the target 
distribution [91]. As such, CycleGAN could 
be trained to synthesize tumors in images of 
healthy patients. Beyond applying consistency 
constraints during image translation, artifacts 
which are not directly visible in synthesized 
images, are also important for consideration. 
For example, CycleGANs incorporate 
high-frequency information in the intermedi-
ate representation used by the second gener-
ator to translate the image back to the source 
domain [92]. This high frequency information 
can interfere with downstream tasks. 

DT-DA approaches require translating the 
entire image, increasing the complexity of 
the models for large-sized medical images 
like whole slide images. Few studies [28, 36] 
have compared adversarial DA methods for 
MRI-CT translation. However, a compre-
hensive comparison of various feature-based 
DA approaches is lacking. Future studies 
could explore combining DT-DA and LFST-
DA approaches [59]. Moreover, current 
frameworks typically focus on source-target 
domain pair, while many tasks, such as stain 
normalization in histopathology images, can 
be multi-domain [93]. 

4.4   Leveraging Synthetic Data
DA for medical imaging can be applied in 
relatively under-explored applications such 
as single-view 3D reconstruction [94] or 
temporal disease analysis [95]. This could 
benefit image-guided surgery, in which 
training data is very scarce and difficult to 
obtain [96]. One way is to leverage synthetic 
data with ground truth information, adapting 
it to the real data. This approach has been 
successfully applied in natural images [97]. 
Reverse domain adaptation (i.e., translating 
real data to synthetic data) is also a promis-
ing solution. Mahmood et al., [39] generated 
synthetic endoscopy data with known depth 
information by using an anatomical colon 
model and a virtual endoscope. This sim-
ulated data was used for 3D reconstruction 
of real endoscopic images. Pan et al., [30] 
translated MR data to generate synthetic 
PET images to infer missing patient scans 
for temporal analysis of Alzheimer’s disease 
[30]. Another area that could benefit from 
synthetic data is skin lesion detection [98].
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Table 1   Summary of DA studies in medical imaging categorized by DA methodology, task, modality, anatomy, and learning scenarios (S: Segmentation; C: Classification; 3DR: 3D Reconstruction).

DA Method Framework Task Source & Target Domains Anatomy Learning Scenario Publications 
Radiology 

Single Modality 

DT 
Reconstruction 

S X-ray (different demographics) Lung 
Unsupervised 

Chen. et. al., [28] 
C X-ray (different demographics) Lung Tang et. al., [100] 
S Synthetic data → MRI Brain Gholami et. a. [99] 

Unidirectional 
C X-ray (different demographics) Lung Semi-supervised Madani et. al., [46] 
C Ultrasound (different sources) Fetal Head 

Unsupervised 

Yang et. al., [25] 

LFST 

Adversarial 

S X-ray (different disease states) Lung Dong et. al., [104] 
S Ultrasound (different sources) Heart Degel et. al., [26] 
S MRI (different FLAIR sequences) Brain Orbes-Arteaga et. al., [78] 
S MRI (moderate to severe TBI) Brain Kamnitsas et. al., [77] 
S MRI (different disease types, demographics) Brain Novosad et. al., [106] 
S MRI (different vendors) Brain Yan et. al., [109] 
S MRI (cross-institutional) Brain, Spine Shanis et. al., [79] 

Divergence S X-ray (different disease types, demographics, contrast) Lung Venkataramani et. al., [72] 

Reconstruction S X-ray (different datasets) Breast Semi-supervised, 
Unsupervised Oliveira et. al., [80] 

Cross-Modality 

DT 
Reconstruction 

S CT →  MRI Lung 

Unsupervised 

Jiang et. al., [54] 
S CT → X-Ray Lung Zhang et. al., [51] 
S MRI ↔ CT Heart Chen et. al., [59] 
S MRI → CT Heart Chartsias et. al., [11] 
S CT ↔ MRI Heart Supervised Zhang et. al., [41] 
S (3D) CT ↔  MRI Heart, Breast, Pancreas 

Unsupervised 

Cai et. al., [52] 
S MRI →  CT Abdomen Huo et. al., [12] 
S MRI → CT, MRI (T1 → T2) Abdomen, Brain Liu et. al., [56] 
S CT →  MRI Hip, Thigh, Pelvis Hiasa et. al., [53] 
C MRI → PET Brain Supervised Pan et. al., [30] 

Unidirectional 
S MRI → CT Brain 

Unsupervised 

Zhao et. al., [47] 
3DR CT → 3D rendered depth-map Colon Mahmood et. al.,[39] 

LFST 

Divergence C MRI → PET Brain Zhu et. al., [71] 

Adversarial 
S CT→ MRI Abdomen Yang et. al., [102] 
S MRI → CT Heart Dou et. al., [103] 

Reconstruction S (3D) MRI → CT Heart Ouyang et. al., [81] 
Pathology 

Single Modality 
DT Unidirectional C WSI (different H&E stains) Breast, Colon, Ovary 

Unsupervised 
Bentaieb et. al., [29] 

LFST 
Adversarial 

C WSI (different stains) Breast Lafarge et. al., [76] 
C WSI (cross-institutional) Prostate Ren et. al., [107] 
S WSI (different stains) Colon Supervised Hou et. al., [110] 

Divergence S Microscopy (different specimens) Brain Unsupervised Chacon et. al., [74] 
Cross-Modality 
DT Reconstruction S WSI (CK → PD-L1) Lung 

Unsupervised 
Kapil et. al., [101] 

 Unidirectional S WSI (H&E ↔ IF) Breast, Bladder, Lung Brieu et. al., [16] 
LFST Adversarial C WSI → Microscopy Colon Zhang et. al., [5] 

Opthalmology 
Single Modality 
DT Unidirectional S Retinal fundus (multiple datasets) Retina 

Unsupervised 

Zhao et. al., [111] 

LFST 
Adversarial 

S Retinal fundus (multiple datasets) Retina Javanmardi et. al., [105] 
S Retinal fundus (multiple datasets) Retina Wang et. al., [108] 

Divergence S Retinal fundus (multiple datasets) Retina Zhuang et. al., [73] 
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5   Conclusions and Future 
Directions
Deep learning has been widely applied to 
medical imaging data analysis. However the 
lack of well-annotated images and the het-
erogeneity of multi-center medical imaging 
datasets are two key challenges for DL per-
formance. DA has emerged as an effective 
approach for minimizing domain-shift and 
leveraging labeled data from distinct but 
related domains. FST-DA and DT-DA are 
two popular approaches to minimize the 
distribution divergence in multiple medical 
imaging studies exploring same-modality or 
cross-modality scenarios. They have proven 
to achieve good performance, particularly 
in unsupervised DA settings and organ 
segmentation tasks. Current approaches 
are primarily adversarial with domains 
being selected based on certain heuristics 
and underlying tasks. Extensive bench-
marking studies are needed to quantify the 
domain relationship for different imaging 
modalities and to compare adversarial and 
non-adversarial approaches. Varying sample 
transferability and multi-modal domains for 
medical imaging are two other major issues. 
One strategy is to explore down-weighting 
or attention-based networks. Also alternative 
multi-modal frameworks such as MUNIT 
[30] can be explored. Finally, for certain 
application areas in medical imaging such 
as 3D reconstruction and temporal disease 
analysis where DA is relatively unexplored, 
synthetic data can be used.
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