Synthesis 2021; 53(04): 623-635
DOI: 10.1055/s-0040-1705946
short review

Recent Advances in Luminescent Annulated Borepins, Silepins, and Phosphepins

Lili Wang
,
Juan Ma
,
Erbing Si
,
Zheng Duan
We are grateful for financial support from the National Natural Science Foundation of China (Nos. 21672193, 21272218), the Ministry of Industry and Information Technology (Z135060009002), and the key scientific and technological project of Henan Province (202102310327), a postdoctoral research grant in Henan Province (No. 001803004), the Ministry of Education of the People’s Republic of China (111 Project; D20003) and Zhengzhou University of China.


Abstract

This review summarizes recent research on the molecular design, optical, and electronic properties of annulated borepins, silepins, and phosphepins, with emphasis on their structure–property relationships at the molecular level.

1 Introduction

2 Borepins

3 Silepins

4 Phosphepins

5 Summary and Outlook



Publication History

Received: 18 August 2020

Accepted after revision: 18 September 2020

Article published online:
29 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Hirai M, Tanaka N, Sakai M, Yamaguchi S. Chem. Rev. 2019; 119: 8291
    • 1b Stępień M, Gońka E, Żyla M, Sprutta N. Chem. Rev. 2017; 117: 3479
    • 1c Pop F, Zigon N, Avarvari N. Chem. Rev. 2019; 119: 8435
    • 1d Vidal F, Jäkle F. Angew. Chem. Int. Ed. 2019; 58: 5846
    • 1e Stolar M, Baumgartner T. Chem. Commun. 2018; 54: 3311
    • 1f Parke SM, Boone MP, Rivard E. Chem. Commun. 2016; 52: 9485
    • 1g He X, Baumgartner T. RSC Adv. 2013; 3: 11334
    • 1h Fukazawa A, Yamaguchi S. Chem. Asian J. 2009; 4: 1386
    • 1i Dhbaibi K, Favereau L, Crassous J. Chem. Rev. 2019; 119: 8846
    • 3a Yamaguchi S, Tamao K. J. Chem. Soc., Dalton Trans. 1998; 3693
    • 3b Zhao ZJ, He BR, Tang BZ. Chem. Sci. 2015; 6: 5347
    • 3c Fu HY, Cheng YR. Curr. Org. Chem. 2012; 16: 1423
    • 4a Baumgartner T. Acc. Chem. Res. 2014; 47: 1613
    • 4b Baumgartner T, Réau R. Chem. Rev. 2006; 106: 4681
    • 4c Duffy MP, Delaunay W, Bouit PA, Hissler M. Chem. Soc. Rev. 2016; 45: 5296
    • 4d Matano Y. Chem. Rec. 2015; 15: 636
    • 4e Ren Y, Baumgartner T. Dalton Trans. 2012; 7792
    • 4f Matano Y, Imahori H. Org. Biomol. Chem. 2009; 7: 1258
    • 4g Szűcs R, Bouit P.-A, Nyulászi L, Hissler M. ChemPhys Chem 2017; 18: 2618
    • 4h Hindenberg P, Romero-Nieto C. Synlett 2016; 27: 2293
    • 5a Matsuda T, Sato S. J. Org. Chem. 2013; 78: 3329
    • 5b Yasuike S, Shiratori S.-I, Kurita J, Tsuchiya T. Chem. Pharm. Bull. 1999; 47: 1108
    • 5c Yasuike S, Nakashima F, Kurita J, Tsuchiy T. Heterocycles 1997; 45: 1899
    • 6a Schulman JM, Disch RL, Sabio ML. J. Am. Chem. Soc. 1982; 104: 3785
    • 6b Disch RL, Sabio ML, Schulman JM. Tetrahedron Lett. 1983; 24: 1863
    • 6c Subramanian G, Schleyer PV. R, Jiao H. Organometallics 1997; 16: 2362
    • 6d Schulman JM, Disch RL. Organometallics 2000; 19: 2932
    • 7a Miyata M, Chujo Y. Polym. J. 2002; 34: 967
    • 7b Li H, Jäkle F. Angew. Chem. Int. Ed. 2009; 48: 2313
    • 7c Chen P, Jäkle F. J. Am. Chem. Soc. 2011; 133: 20142
    • 7d Yin X, Chen J, Lalancette RA, Marder TB, Jäkle F. Angew. Chem. Int. Ed. 2014; 53: 9761
    • 7e Yin X, Guo F, Lalancette RA, Jäkle F. Macromolecules 2016; 49: 537
    • 7f Yin X, Liu K, Ren Y, Lalancette RA, Loo Y.-L, Jäkle F. Chem. Sci. 2017; 8: 5497
    • 8a De Simone BC, Mazzone G, Marino T, Russo N, Toscano M. ACS Omega 2018; 3: 9556
    • 8b Matsumi N, Chujo Y. Polym. J. 2008; 40: 77
    • 8c Nagai A, Murakami T, Nagata Y, Kokado K, Chujo Y. Macromolecules 2009; 42: 7217
    • 8d Li H, Jäkle F. Macromol. Rapid Commun. 2010; 31: 915
    • 8e Chen P, Lalancette RA, Jäkle F. Angew. Chem. Int. Ed. 2012; 51: 7994
    • 8f Chen P, Yin X, Baser-Kirazli N, Jäkle F. Angew. Chem. Int. Ed. 2015; 54: 10768
  • 9 Saito S, Matsuo K, Yamaguchi S. J. Am. Chem. Soc. 2012; 134: 9130
  • 10 Mercier LG, Piers WE, Parvez M. Angew. Chem. Int. Ed. 2009; 48: 6108
    • 11a Mercier LG, Furukawa S, Piers WE, Wakamiya A, Yamaguchi S, Parvez M, Harrington RW, Clegg W. Organometallics 2011; 30: 1719
    • 11b Adachi Y, Arai F, Jäkle F. Chem. Commun. 2020; 56: 5119
    • 12a Hudnall TW, Chiu C.-W, Gabbaï FP. Acc. Chem. Res. 2009; 42: 388
    • 12b Zhou G, Baumgarten M, Müllen K. J. Am. Chem. Soc. 2008; 130: 12477
    • 12c Hudnall TW, Gabbaï FP. J. Am. Chem. Soc. 2007; 129: 11978
  • 13 Caruso A, Siegler MA, Tovar JD. Angew. Chem. Int. Ed. 2010; 49: 4213
  • 15 Martín N, Haley M, Tykwinski R. Chem. Commun. 2012; 48: 6256
    • 16a Gronowitz S, Gassne P, Yom-Tov B. Acta Chem. Scand. 1969; 23: 2927
    • 16b Jeffries AT. III, Gronowitz S. Chem. Scr. 1973; 4: 183
    • 16c Jeffries AT. III, Párkányi C. J. Phys. Chem. 1976; 80: 287
    • 17a van Tamelen EE, Brieger G, Untch KG. Tetrahedron Lett. 1960; 14
    • 18a Sugihara Y, Yagi T, Murata I. J. Am. Chem. Soc. 1992; 114: 1479
    • 18b Sugihara Y, Miyatake R, Yagi T. Chem. Lett. 1993; 22: 933
    • 18c Sugihara Y, Miyatake R, Yagi T, Murata I, Jinguji M, Nakazawa T, Imamura A. Tetrahedron 1994; 50: 6495
    • 19a Messersmith RE, Siegler MA, Tovar JD. Synlett 2018; 29: 2499
    • 19b Messersmith RE, Yadav S, Siegler MA, Ottosson H, Tovar JD. J. Org. Chem. 2017; 82: 13440
    • 19c Messersmith RE, Siegler MA, Tovar JD. J. Org. Chem. 2016; 81: 5595
  • 20 Levine DR, Siegler MA, Tovar JD. J. Am. Chem. Soc. 2014; 136: 7132
  • 21 Levine DR, Messersmith RE, Siegler MA, Tovar JD. Can. J. Chem. 2017; 95: 381
  • 22 Lee H, Cha I, Lee EJ, Lee Y, Kim YH, Song C. Chem. Lett. 2014; 43: 1432
  • 23 Adachi Y, Ohshita J. Organometallics 2018; 37: 869
  • 24 Schickedanz K, Radtke J, Bolte M, Lerner H.-W, Wagner M. J. Am. Chem. Soc. 2017; 139: 2842
  • 25 Yang W, Krantz KE, Freeman LA, Dickie DA, Molino A, Kaur A, Wilson DJ. D, Gilliard RJ. Chem. Eur. J. 2019; 25: 12512
  • 26 Ando N, Kushida T, Yamaguchi S. Chem. Commun. 2018; 54: 5213
  • 27 Iida A, Saito S, Sasamori T, Yamaguchi S. Angew. Chem. Int. Ed. 2013; 52: 3760
  • 28 He Z.-C, Mellerup SK, Liu L, Wang X, Dao C, Wang S. Angew. Chem. Int. Ed. 2019; 58: 6683
  • 29 Shirani H, Janosik T. Organometallics 2008; 27: 3960
  • 30 Blasco V, Murga J, Falomir E, Carda M, Royo S, Cuñat AC, Sanz-Cervera JF, Marco JA. Org. Biomol. Chem. 2018; 16: 5859
  • 31 Shibata T, Uno N, Sasaki T, Takano H, Sato T, Kanyiva KS. J. Org. Chem. 2018; 83: 3426
    • 32a Tokoro Y, Tanaka K, Chujo Y. Org. Lett. 2013; 15: 2366
    • 32b Tokoro Y, Tanaka K, Chujo Y. RSC Adv. 2015; 5: 23331
    • 32c Tokoro Y, Tanaka K, Chujo Y. Bull. Chem. Soc. Jpn. 2015; 88: 1350
  • 33 Yamamura M, Kano N, Kawashima T, Matsumoto T, Harada J, Ogawa K. J. Org. Chem. 2008; 73: 8244
    • 34a Märkl G, Schubert H. Tetrahedron Lett. 1970; 1273
    • 34b Winter W. Chem. Ber. 1976; 109: 2405
    • 34c Winter W. Z. Naturforsch., B 1976; 31: 1116
    • 34d Segall Y, Shirin E, Granoth I. Phosphorus Sulfur Relat. Elem. 1980; 8: 243
    • 34e Märkl G, Burger W. Tetrahedron Lett. 1983; 24: 2545
    • 34f Yasuike S, Ohta H, Shiratori S, Kurita J, Tsuchiya T. J. Chem. Soc., Chem. Commun. 1993; 1817
  • 35 Lyaskovskyy V, van Dijk-Moes RJ. A, Burck S, Dzik WI, Lutz M, Ehlers AW, Slootweg JC, de Bruin B, Lammertsma K. Organometallics 2013; 32: 363
  • 36 Delouche T, Mocanu A, Roisnel T, Szűcs R, Jacques E, Benkő Z, Nyulászi L, Bouit P.-A, Hissler M. Org. Lett. 2019; 21: 802
  • 37 Padberg K, Ascherl JD. R, Hampel F, Kivala M. Chem. Eur. J. 2020; 26: 3474
  • 38 Delouche T, Mokrai R, Roisnel T, Tondelier D, Geffroy B, Nyulászi L, Benkő Z, Hissler M, Bouit P.-A. Chem. Eur. J. 2020; 26: 1856
  • 39 Regulska E, Ruppert H, Rominger F, Romero-Nieto C. J. Org. Chem. 2020; 85: 1247
  • 40 Wu D, Hu C, Qiu L, Duan Z, Mathey F. Eur. J. Org. Chem. 2019; 6369
  • 41 Widhalm M, Mereiter K. Bull. Chem. Soc. Jpn. 2003; 76: 1233
  • 42 Nishimura K, Hirano K, Miura M. Org. Lett. 2020; 22: 3185