Synthesis of Optically Active Maresin 2 and Maresin $\mathbf{2}_{\mathrm{n}-3}$ DPA

Narihito Ogawa*a ${ }^{\text {© }}$
Takahito Amano ${ }^{\text {a }}$
Yuichi Kobayashi ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Applied Chemistry, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
narihito@meiji.ac.jp
${ }^{\text {b }}$ Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan

etric epoxidation
asymmetric epoxidation
then Swern oxidation

Received: 02.09.2020
Accepted after revision: 02.10.2020
Published online: 02.11.2020
DOI: 10.1055/s-0040-1705959; Art ID: st-2020-u0484-I
Abstract Maresins are among the most potent antiinflammatory lipid metabolites. We report stereoselective syntheses of maresin 2 and maresin 2_{n-3} DPA. The anti-diol was constructed through epoxide ring opening of an optically active β, γ-epoxy aldehyde, synthesized in situ by Swern oxidation of the corresponding alcohol. Finally, the target compounds were synthesized through a Sonogashira coupling of a C9-C22 iodide and methyl (Z)-oct-4-en-7-ynoate or methyl oct-7-ynoate, respectively.

Key words maresins, asymmetric synthesis, trienes, Swern oxidation

Resolvins and protectins, metabolized from polyunsaturated fatty acids, are specialized pro-resolving mediators (SPMs). ${ }^{1}$ SPMs have been reported to actively promote the resolution of inflammation. In 2014, Serhan isolated maresin 2 from human macrophages as a metabolite derived from docosahexaenoic acid (Figure 1). ${ }^{2}$ This compound shows a strong antiinflammatory effect at 1 ng per mouse in a mouse peritonitis model. ${ }^{2}$ Maresin $2_{\mathrm{n}-3 \text { DPA }}$, possessing a single bond at the C4-C5 position of maresin 2, also shows an antiinflammatory effect. ${ }^{3}$ Several SPMs are undergoing initial clinical trials, and maresin 1 has recently been reported to possess wound-healing activity. ${ }^{4}$ Consequently, maresin 2 and maresin $2_{n-3 \text { DPA }}$ are also of interest as candidates for drug-discovery research. However, maresins are available only in minute amounts from natural sources. In addition, commercially available maresin 2 is expensive, making it difficult to obtain sufficient amounts. The groups of Spur and Hansen have reported syntheses of these compounds through the chiral-pool method with 2-deoxy-D-ribose as a starting material. ${ }^{5}$ However, drug-discovery research requires a flexible synthetic method that can efficiently supply the desired chiral centers. We have previously synthe-
sized various lipid mediators by constructing chiral centers by asymmetric reactions. ${ }^{6}$ Here, we report stereoselective syntheses of maresin 2 and maresin $2_{\mathrm{n}-3 \text { DPA }}$ by using asymmetric reactions.

Figure 1 Structures of maresins

Scheme 1 outlines our retrosynthetic analysis of maresin 2 (2). We planned to construct the triene of $\mathbf{2}$ by connecting two components, the terminal alkyne $\mathbf{4}$ and the iodoalkene 5, by a Sonogashira coupling reaction, followed by acetylene reduction. ${ }^{6}$ The internal cis-olefin 4 would be obtained from γ-butyrolactone by a Wittig reaction. The vicinal diol at C13-C14 would be constructed stereoselectively by a Sharpless asymmetric epoxidation, followed by an epoxide ring opening of the β, γ-epoxy aldehyde.

The first step in our synthesis of maresin 2 (2) involved the preparation of enyne 4 (Scheme 2). Phosphonium salt 9 was synthesized from but-3-yn-1-ol (8) by a previously reported procedure. ${ }^{7}$ The ring-opening reaction of γ-butyrolactone (10) with $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{MeOH}$ generated the corresponding alcohol, which was then oxidized with sulfur trioxide/pyridine $\left(\mathrm{SO}_{3} \cdot \mathrm{py}\right)$ to yield aldehyde $\mathbf{1 1}$. Wittig reaction of $\mathbf{1 1}$

with phosphonium salt $\mathbf{9}$ in the presence of NaHMDS afforded the terminal alkyne $\mathbf{4}^{8}$ in 64% yield over the three steps.

Next, the iodoolefin 5 was prepared via the epoxy alcohol 19. Propane-1,3-diol (12) was converted into the silyl ether $\mathbf{1 3}$ by a reported procedure (Scheme 3). ${ }^{9}$ Oxidation of 13 by SO_{3}.py was followed by the addition of alkyne $14{ }^{10}$ to the resulting aldehyde to give alcohol rac-15 in 65% yield. Oxidation of rac-15 followed by asymmetric transfer hydrogenation ${ }^{11}$ produced the optically active alcohol (S)- $\mathbf{1 5}$ in 69% yield with $98 \% \mathrm{ee}$, as determined by ${ }^{1} \mathrm{H}$ NMR analysis of its α-methoxy- α-(trifluoromethyl)phenylacetic (MTPA) ester derivative. Treatment of (S) - $\mathbf{1 5}$ with Red-Al not only reduced the triple bond, but also promoted deprotection of

Scheme 2 Synthesis of terminal alkyne 4
the TBDPS group. As a result, the resulting primary hydroxy group was protected once again with TBDPSCl to give allylic alcohol 17^{8} in 51% yield. This was then converted into the epoxy alcohol 18 by a Sharpless asymmetric epoxidation ${ }^{6 c, 12}$ in 75% yield with $>99 \%$ ee, as determined by ${ }^{1} \mathrm{H}$ NMR analysis of the MTPA ester derivative. In this reaction, the enantiomeric purity was improved by kinetic resolution of 17 (98% ee). Protection of epoxy alcohol 18 followed by deprotection using DDQ afforded alcohol 19 in 58\% yield.

Scheme 3 Synthesis of epoxy alcohol 19

Enal 20, ${ }^{8}$ containing a vicinal diol, was prepared in 69\% yield by oxidation of epoxy alcohol 19 followed by cleavage of the epoxide ring (Scheme 4). Protection of 20 with TBSOTf in the presence of 2,6-lutidine gave the disilyl ether $\mathbf{2 1}$ in 83% yield; this was subsequently converted into enyne 22 (76% yield) by treatment with TMSCHN_{2} and LDA. ${ }^{13}$ The (E)stereoselectivity of the olefin in 22 was $>99 \%$, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Hydrozirconation of $\mathbf{2 2}$ with $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}$, generated in situ from $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ and DIBAL, ${ }^{14}$ followed by iodination of the resulting vinylzirconium species with I_{2} produced vinyl iodide $23 .{ }^{8}$ The TBS and TBDPS groups in $\mathbf{2 3}$ were then replaced by TES groups in a two-step reaction to produce 24 . Swern oxidation ${ }^{15}$ of $\mathbf{2 4}$ occurred regioselectively at the terminal carbon to afford an aldehyde that, upon Wittig reaction with phosphonium salt $7^{5 a}$ followed by desilylation, afforded iodoolefin $\mathbf{5}^{8}$ in 59% yield over three steps.

In the last stage, the synthesis of maresin 2 (2) was completed, as shown in Scheme 5. Polyene $\mathbf{2 5}$ was synthesized in 61% yield by Sonogashira coupling of the alkyne 4 and iodoolefin 5. ${ }^{6}$ Finally, reduction of $\mathbf{2 5}$ by $\mathrm{Zn}(\mathrm{Cu} / \mathrm{Ag})$, ,6,c,16 fol-

Scheme 4 Synthesis of iodoolefin 5

Scheme 5 Synthesis of maresin 2 (2)
lowed by hydrolysis with aqueous LiOH afforded maresin 2 (2) in 63% yield. ${ }^{17}$ The spectral data (NMR and UV) of $\mathbf{2}$ were in good agreement with those reported previously. ${ }^{5 b}$

Next, maresin $2_{\text {n-3 DPA }}$ (3) was synthesized according to the method shown in Scheme 6. Alkyne 28 was obtained by Sonogashira coupling of iodoolefin 5 with alkyne 27, pre-
pared from oct-7-yn-1-ol (26) in three steps. Maresin 2_{n-3} DPA (3) was then synthesized in a two-step reaction by using the same method as used for $\mathbf{2}$. The spectral data (NMR and UV) and $[\alpha]_{\mathrm{D}}$ of $\mathbf{3}$ were consistent with those reported previously. ${ }^{5 \mathrm{a}}$

Scheme 6 Synthesis of maresin $2_{n-3 \text { DPA }}$ (3)
In conclusion, we have accomplished asymmetric syntheses of maresin 2 (2) and maresin $2_{n-3 \text { DPA }}$ (3). Alkyne 4 was synthesized from γ-butyrolactone (10) and phosphonium salt $\mathbf{7}$ in three steps. Meanwhile, vicinal diol 20 was constructed by a Sharpless asymmetric epoxidation and a Swern oxidation. Diol 20 was then converted into iodoolefin 5 by a multistep reaction. Finally, reaction of 4 with 5 gave maresin 2 (2) in 22 steps from propane-1,3-diol (12) with a total yield of 0.79%. We also synthesized 3 by using the same approach as that described for $\mathbf{2}$ in 22 steps from 12, with a total yield of 0.58%. The spectral data for 2 and $\mathbf{3}$

Funding Information

This work was supported by Research Project Grant (B) by Institute of Science and Technology Meiji University (N.O.).

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1705959.

References and Notes

(1) (a) Dalli, J.; Serhan, C. N. Br. J. Pharmacol. 2018, 8, 1024. (b) Serhan, C. N. Nature 2014, 510, 92.
(2) Deng, B.; Wang, C.-W.; Arnardottir, H. H.; Li, Y.; Cheng, C.-Y. C.; Dalli, J.; Serhan, C. N. PLoS One 2014, 9, e102362.
(3) Dalli, J.; Colas, R. A.; Serhan, C. N. Sci. Rep. 2013, 3, 1940; corrigendum: Sci. Rep. 2014, 4, 6726.
(4) (a) Wang, C. W.; Yu, S. H.; Fretwurst, T.; Larsson, L.; Sugai, J. V.; Oh, J.; Lehner, K.; Jin, Q.; Giannobile, W. V. J. Dent. Res. 2020, 99, 930. (b) Serhan, C. N.; Levy, B. D. J. Clin. Invest. 2018, 128, 2657.
(5) (a) Sønderskov, J.; Tungen, J. E.; Palmas, F.; Dalli, J.; Serhan, C. N.; Stenstrøm, Y.; Hansen, T. V. Tetrahedron Lett. 2020, 61, 151510. (b) Rodriguez, A. R.; Spur, B. W. Tetrahedron Lett. 2015, 56, 256.
(6) (a) Ogawa, N.; Sone, S.; Hong, S.; Lu, Y.; Kobayashi, Y. Synlett 2020, 31, 1735. (b) Morita, M.; Tanabe, S.; Arai, T.; Kobayashi, Y. Synlett 2019, 30, 1351. (c) Morita, M.; Wu, S.; Kobayashi, Y. Org. Biomol. Chem. 2019, 17, 2212.
(7) Kobayashi, Y.; Morita, M.; Ogawa, N.; Kondo, D.; Tojo, T. Org. Biomol. Chem. 2016, 14, 10667.
(8) The double bond of the product was obtained with high selectivity. The corresponding olefin isomer could not be detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
(9) Druais, V.; Hall, M. J.; Corsi, C.; Wendeborn, S. V.; Meyer, C.; Cossy, J. Org. Lett. 2009, 11, 935.
(10) Banfi, L.; Basso, A.; Guanti, G.; Riva, R. Tetrahedron 2006, 62, 4331.
(11) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738.
(12) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
(13) (a) Miwa, K.; Aoyama, T.; Shioiri, T. Synlett 1994, 107. (b) Colvin, E. W.; Hamill, B. J. J. Chem. Soc., Chem. Commun. 1973, 151.
(14) (a) Huang, Z.; Negishi, E.-i. Org. Lett. 2006, 8, 3675. (b) Spino, C.; Tremblay, M.-C.; Godbout, C. Org. Lett. 2004, 6, 2801; corrigendum: Org. Lett. 2005, 7, 1673. (c) Kiyotsuka, Y.; Igarashi, J.; Kobayashi, Y. Tetrahedron Lett. 2002, 43, 2725.
(15) Afonso, C. M.; Barros, M. T.; Maycock, C. D. J. Chem. Soc., Perkin Trans. 1 1987, 1221.
(16) Boland, W.; Schroer, N.; Sieler, C.; Feigel, M. Helv. Chim. Acta 1987, 70, 1025.
(17) Maresin 2 (2)
$\mathrm{Cu}(\mathrm{OAc})_{2}(101 \mathrm{mg}, 0.55 \mathrm{mmol})$ and $\mathrm{AgNO}_{3}(103 \mathrm{mg}, 0.61 \mathrm{mmol})$ were added to a slurry of $\mathrm{Zn}(1.08 \mathrm{~g}, 16.5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, and the mixture was stirred for 1 h then filtered by using a Hirsch funnel. The remaining Zn solids were washed successively with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, $\mathrm{MeOH}(1 \mathrm{~mL})$, acetone $(1 \mathrm{~mL})$, and $\mathrm{Et}_{2} \mathrm{O}$ (1 mL). The activated Zn solids were transferred to $1: 1 \mathrm{MeOH}-$ $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and a solution of alkyne $\mathbf{2 5}(30.7 \mathrm{mg}, 0.082 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to the suspension of activated Zn . The mixture was stirred for 11 h then filtered through a plug of cotton that was washed with EtOAc. The mixture was concentrated, and the residue was semi-purified by chromatography (silica gel), ready for the next reaction.
To an ice-cold solution of the resulting ester in $\mathrm{MeOH}(1 \mathrm{~mL})$ and THF (1 mL) was added 2 N aq $\mathrm{LiOH}(0.82 \mathrm{~mL}, 1.64 \mathrm{mmol})$. After 5 h at $0{ }^{\circ} \mathrm{C}$, citrate-phosphate buffer ($\mathrm{pH} 5.0,40 \mathrm{~mL}$) was added, and the resulting mixture was extracted with EtOAc $(\times 7)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated, and the residue was purified by chromatography (silica gel, hexane-EtOAc) to give maresin 2 (2) as a pale-yellow oil; yield: 18.5 mg (63% from 25); $R_{f}=0.61$ (hexane-EtOAc, 1:2); $[\alpha]_{\mathrm{D}}{ }^{24}+45.8(c 0.37, \mathrm{MeOH})$.
IR (neat): $3454,2064,1727,1652 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta=0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.97$ (quin, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.02-2.13 (m, 1H), 2.20-2.33 (m, 5 H), 2.70 (t, J = 6.2 Hz, 2 H), $2.89(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{dt}, J=8.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=$ $7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 3 \mathrm{H}$, overlapped with the residue from $\left.\mathrm{CD}_{3} \mathrm{OD}\right), 5.15-5.43(\mathrm{~m}, 7 \mathrm{H}), 5.72$ (dd, $\left.J=14.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.94$ ($\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.16(\mathrm{dd}, J=14.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=$ $14.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48$ (dd, $J=14.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=14.7,21.5,23.8,26.6,27.0,31.8,35.0$, $75.8,76.3,127.1,128.2,129.1,129.5,129.7,129.8,131.0,131.2$, 132.7, 133.6, 133.7, 133.8, 177.1. HRMS (FD): $m / z\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4}$: 360.23006; found: 360.23029 . UV (MeOH): $\lambda_{\max }=$ 262, 274, 282 nm .

